Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published December 2020 | Supplemental Material + Published
Book Section - Chapter Open

Neural Networks with Recurrent Generative Feedback

Abstract

Neural networks are vulnerable to input perturbations such as additive noise and adversarial attacks. In contrast, human perception is much more robust to such perturbations. The Bayesian brain hypothesis states that human brains use an internal generative model to update the posterior beliefs of the sensory input. This mechanism can be interpreted as a form of self-consistency between the maximum a posteriori (MAP) estimation of an internal generative model and the external environment. Inspired by such hypothesis, we enforce self-consistency in neural networks by incorporating generative recurrent feedback. We instantiate this design on convolutional neural networks (CNNs). The proposed framework, termed Convolutional Neural Networks with Feedback (CNN-F), introduces a generative feedback with latent variables to existing CNN architectures, where consistent predictions are made through alternating MAP inference under a Bayesian framework. In the experiments, CNN-F shows considerably improved adversarial robustness over conventional feedforward CNNs on standard benchmarks.

Additional Information

We thank Chaowei Xiao, Haotao Wang, Jean Kossaifi, Francisco Luongo for the valuable feedback. Y. Huang is supported by DARPA LwLL grants. J. Gornet is supported by supported by the NIH Predoctoral Training in Quantitative Neuroscience 1T32NS105595-01A1. D. Y. Tsao is supported by Howard Hughes Medical Institute and Tianqiao and Chrissy Chen Institute for Neuroscience. A. Anandkumar is supported in part by Bren endowed chair, DARPA LwLL grants, Tianqiao and Chrissy Chen Institute for Neuroscience, Microsoft, Google, and Adobe faculty fellowships.

Attached Files

Published - NeurIPS-2020-neural-networks-with-recurrent-generative-feedback-Paper.pdf

Supplemental Material - NeurIPS-2020-neural-networks-with-recurrent-generative-feedback-Supplemental.pdf

Files

NeurIPS-2020-neural-networks-with-recurrent-generative-feedback-Supplemental.pdf

Additional details

Created:
August 20, 2023
Modified:
December 22, 2023