Measuring the mass–radius relation of individual white dwarfs is an empirically challenging task that has been performed for only a few dozen stars. We measure the white dwarf mass–radius relation using the gravitational redshifts and radii of 135 white dwarfs in wide binaries with main-sequence companions. We obtain the radial velocities of these systems using the main-sequence companion, and subtract these Doppler redshifts from the white dwarfs' apparent motions, isolating their gravitational redshifts. We use Gaia data to calculate the surface temperatures and radii of these white dwarfs, thereby deriving an empirical gravitational redshift–radius relation. This work demonstrates the utility of low-resolution Galactic surveys to measure the white dwarf equation of state. Our results are consistent with theoretical models, and represent the largest sample of individual white dwarf gravitational redshift measurements to date.
Measuring the Mass–Radius Relation of White Dwarfs Using Wide Binaries
Abstract
Copyright and License
© 2024. The Author(s). Published by the American Astronomical Society. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Acknowledgement
The authors thank the referee for constructive comments that helped improve the paper. S.A. was supported by the JHU Provost's Undergraduate Research Award. N.L.Z. acknowledges support by a seed grant from the JHU Institute for Data Intensive Engineering and Science. V.C. acknowledges a Peirce Fellowship from Harvard University.
Funding for the Sloan Digital Sky Survey V has been provided by the Alfred P. Sloan Foundation, the Heising-Simons Foundation, the National Science Foundation, and the Participating Institutions. SDSS acknowledges support and resources from the Center for High-Performance Computing at the University of Utah. SDSS telescopes are located at Apache Point Observatory, funded by the Astrophysical Research Consortium and operated by New Mexico State University, and at Las Campanas Observatory, operated by the Carnegie Institution for Science. The SDSS web site is www.sdss.org. SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS Collaboration, including Caltech, the Carnegie Institution for Science, Chilean National Time Allocation Committee (CNTAC) ratified researchers, The Flatiron Institute, the Gotham Participation Group, Harvard University, Heidelberg University, The Johns Hopkins University, L'Ecole polytechnique fédérale de Lausanne (EPFL), Leibniz-Institut für Astrophysik Potsdam (AIP), Max-Planck-Institut für Astronomie (MPIA Heidelberg), Max-Planck-Institut für Extraterrestrische Physik (MPE), Nanjing University, National Astronomical Observatories of China (NAOC), New Mexico State University, The Ohio State University, Pennsylvania State University, Smithsonian Astrophysical Observatory, Space Telescope Science Institute (STScI), the Stellar Astrophysics Participation Group, Universidad Nacional Autónoma de México, University of Arizona, University of Colorado Boulder, University of Illinois at Urbana-Champaign, University of Toronto, University of Utah, University of Virginia, Yale University, and Yunnan University.
This work has made use of data from the European Space Agency (ESA) mission Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC; https://www.cosmos.esa.int/web/gaia/dpac/consortium). Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement.
Data Availability
The wavelength-calibrated and flux-calibrated SDSS spectra of the white dwarfs and main sequence stars used in this paper (whether they are from proprietary SDSS-V data or public SDSS I–IV data) are available as an electronic supplement to this paper, with the wavelengths given in vacuum as per the SDSS convention. The wavelength-calibrated APO spectra used in this paper are also available, with the wavelengths given in air. APO flux calibrations should not be used due to continued issues with the instrument.
Files
Name | Size | Download all |
---|---|---|
md5:c80bb4dd75db2b78a281e8f06b541853
|
1.6 MB | Preview Download |
Additional details
- ISSN
- 1538-4357
- Johns Hopkins University
- Harvard University
- Alfred P. Sloan Foundation
- Heising-Simons Foundation
- National Science Foundation
- European Space Agency
- Gaia Multilateral Agreement
- Caltech groups
- Astronomy Department