Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published November 15, 1993 | public
Journal Article

A variational boundary integral method for the analysis of 3-D cracks of arbitrary geometry modelled as continuous distributions of dislocation loops

Abstract

A finite element methodology for analysing propagating cracks of arbitrary three-dimensional geometry is developed. By representing the opening displacements of the crack as a distribution of dislocation loops and minimizing the corresponding potential energy of the solid, the kernels of the governing integral equations have mild singularities of the type 1/R. A simple quadrature scheme then suffices to compute all the element arrays accurately. Because of the variational basis of the method, the resulting system of equations is symmetric. By employing six-noded triangular elements and displacing midside nodes to quarter-point positions, the opening profile near the front is endowed with the correct asymptotic behaviour. This enables the direct computation of stress intensity factors from the opening displacements. The special but important cases of periodic and semi-infinite cracks are addressed in some detail. Finally, the geometry of propagating cracks is updated incrementally by recourse to a pseudodynamic crack-tip equation of motion. The crack is continuously remeshed to accommodate the ensuing changes in geometry. The performance of the method is assessed by means of selected numerical examples.

Additional Information

© 1993 John Wiley & Sons. Received 13 October 1992. Revised 28 December 1992. The support of the U.S. Office of Naval Research through grant N00014-90-J-1758 is gratefully acknowledged.

Additional details

Created:
August 20, 2023
Modified:
October 18, 2023