Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published June 2013 | Published
Journal Article Open

The Force Balance of the Southern Ocean Meridional Overturning Circulation


The Southern Ocean (SO) limb of the meridional overturning circulation (MOC) is characterized by three vertically stacked cells, each with a transport of about 10 Sv (Sv ≡ 10^6 m^3 s^(−1)). The buoyancy transport in the SO is dominated by the upper and middle MOC cells, with the middle cell accounting for most of the buoyancy transport across the Antarctic Circumpolar Current. A Southern Ocean state estimate for the years 2005 and 2006 with 1/6° resolution is used to determine the forces balancing this MOC. Diagnosing the zonal momentum budget in density space allows an exact determination of the adiabatic and diapycnal components balancing the thickness-weighted (residual) meridional transport. It is found that, to lowest order, the transport consists of an eddy component, a directly wind-driven component, and a component in balance with mean pressure gradients. Nonvanishing time-mean pressure gradients arise because isopycnal layers intersect topography or the surface in a circumpolar integral, leading to a largely geostrophic MOC even in the latitude band of Drake Passage. It is the geostrophic water mass transport in the surface layer where isopycnals outcrop that accomplishes the poleward buoyancy transport.

Additional Information

© 2013 American Meteorological Society. Manuscript received 9 April 2012, in final form 15 February 2013. We acknowledge the National Science Foundation (NSF) for support of this research through Grants OCE-1233832, OCE-1234473, and OPP- 0961218. SOSE was produced using the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation Grant MCA06N007.

Attached Files

Published - jpo-d-12-069.1.pdf


Files (5.1 MB)
Name Size Download all
5.1 MB Preview Download

Additional details

August 22, 2023
October 24, 2023