miRNA-211 maintains metabolic homeostasis in medulloblastoma through its target gene long-chain acyl-CoA synthetase 4
- Creators
- Yuan, Menglang
- Mahmud, Iqbal
- Katsushima, Keisuke
- Joshi, Kandarp
- Saulnier, Olivier
- Pokhrel, Rudramani
- Lee, Bongyong
- Liyanage, Wathsala
- Kunhiraman, Haritha
- Stapleton, Stacie
- Gonzalez-Gomez, Ignacio
- Kannan, Rangaramanujam M.
- Eisemann, Tanja
- Kolanthai, Elayaraja
- Seal, Sudipta
- Garrett, Timothy J.
- Abbasi, Saed
- Bockley, Kimberly
- Hanes, Justin
- Chapagain, Prem
- Jallo, George
- Wechsler-Reya, Robert J.
- Taylor, Michael D.
- Eberhart, Charles G.
- Ray, Animesh
- Perera, Ranjan J.
Abstract
The prognosis of childhood medulloblastoma (MB) is often poor, and it usually requires aggressive therapy that adversely affects quality of life. microRNA-211 (miR-211) was previously identified as an important regulator of cells that descend from neural cells. Since medulloblastomas primarily affect cells with similar ontogeny, we investigated the role and mechanism of miR-211 in MB. Here we showed that miR-211 expression was highly downregulated in cell lines, PDXs, and clinical samples of different MB subgroups (SHH, Group 3, and Group 4) compared to normal cerebellum. miR-211 gene was ectopically expressed in transgenic cells from MB subgroups, and they were subjected to molecular and phenotypic investigations. Monoclonal cells stably expressing miR-211 were injected into the mouse cerebellum. miR-211 forced expression acts as a tumor suppressor in MB both in vitro and in vivo, attenuating growth, promoting apoptosis, and inhibiting invasion. In support of emerging regulatory roles of metabolism in various forms of cancer, we identified the acyl-CoA synthetase long-chain family member (ACSL4) as a direct miR-211 target. Furthermore, lipid nanoparticle-coated, dendrimer-coated, and cerium oxide-coated miR-211 nanoparticles were applied to deliver synthetic miR-211 into MB cell lines and cellular responses were assayed. Synthesizing nanoparticle-miR-211 conjugates can suppress MB cell viability and invasion in vitro. Our findings reveal miR-211 as a tumor suppressor and a potential therapeutic agent in MB. This proof-of-concept paves the way for further pre-clinical and clinical development.
Copyright and License
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
Funding
Schamroth Project funded by Ian's Friends Foundation to RJP and GJ. The Hough Foundation made a grant to RJP and GJ. This study was supported by P30 CA006973 (JHU SKCCC) to RJP, CGE, ER, and CB, NCI 5P30CA030199 (SBP) RW-R, R01NS124668-01A1 to RJP and CPRIT Scholar to MDT.
Contributions
Study design: MY, RJP, AR, BL, RP, KK. Experimental work: MY, HK, RP, KK, and IM. Provision of cell lines, patient samples, TMAs, FFPE sections, and PDXs for the study: CGE, ER, and RWR. Data analysis: IM, PC, RP, OS, KJ, IG. Nanoparticles and Chemistry: EK, SS, SA, JH, WL, and RK. Metabolomics and lipidomics: IM and TG. Wrote the main draft of text: MY, RJP, IM KK, IM, RZ, SS, GJ, ER, MDT, RWR, OS, AR and CGE. Revised and approved the final version of the manuscript: All authors.
Conflict of Interest
The authors declare no competing interest.
Files
Name | Size | Download all |
---|---|---|
md5:f4738189b9268fd3246c1041daa3aea7
|
10.0 MB | Preview Download |
md5:0c9cbf3d99bdaadaa66a9686085f1d46
|
12.2 kB | Download |
md5:a3dd0e77fc9b8d6294885447b9e1ff2e
|
31.9 kB | Download |
md5:118f08786823ecc7af5ff141e9e77133
|
74.8 MB | Download |
md5:83d4e76ecffa47b161910de50ed34f58
|
53.5 kB | Download |
md5:5a3a305851e8c1edf8b8d2a06a4034c8
|
10.2 MB | Download |
Additional details
- PMCID
- PMC10729563
- Ian's Friends Foundation
- National Institutes of Health
- P30 CA006973
- National Institutes of Health
- 5P30CA030199
- National Institutes of Health
- R01NS124668-01A1
- Cancer Prevention and Research Institute of Texas
- Accepted
-
2023-12-19published online