Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published December 10, 2016 | Published + Supplemental Material + Submitted
Journal Article Open

The Rate of Binary Black Hole Mergers Inferred from Advanced LIGO Observations Surrounding GW150914


A transient gravitational-wave signal, GW150914, was identified in the twin Advanced LIGO detectors on September 14, 2015 at 09:50:45 UTC. To assess the implications of this discovery, the detectors remained in operation with unchanged configurations over a period of 39 d around the time of the signal. At the detection statistic threshold corresponding to that observed for GW150914, our search of the 16 days of simultaneous two-detector observational data is estimated to have a false alarm rate (FAR) of < 4.9 × 10^(−6) yr^(−1), yielding a p-value for GW150914 of < 2 × 10^(−7). Parameter estimation followup on this trigger identifies its source as a binary black hole (BBH) merger with component masses (m_1, m_2) = (36^(+5)_(−4), 29^(+4)_(−4)) M_⊙ at redshift z = 0.09^(+0.03)_(−0.04) (median and 90\% credible range). Here we report on the constraints these observations place on the rate of BBH coalescences. Considering only GW150914, assuming that all BBHs in the Universe have the same masses and spins as this event, imposing a search FAR threshold of 1 per 100 years, and assuming that the BBH merger rate is constant in the comoving frame, we infer a 90% credible range of merger rates between 2--53 Gpc^(−3) yr^(−1) (comoving frame). Incorporating all search triggers that pass a much lower threshold while accounting for the uncertainty in the astrophysical origin of each trigger, we estimate a higher rate, ranging from 13--600 Gpc^(−3) yr^(−1) depending on assumptions about the BBH mass distribution. All together, our various rate estimates fall in the conservative range 2--600 Gpc^(−3) yr^(−1).

Additional Information

© 2016 American Astronomical Society. Received 2016 February 12. Accepted 2016 September 19. Published 2016 November 30. The authors gratefully acknowledge the support of the United States National Science Foundation (NSF) for the construction and operation of the LIGO Laboratory and Advanced LIGO as well as the Science and Technology Facilities Council (STFC) of the United Kingdom, the Max-Planck-Society (MPS), and the State of Niedersachsen/Germany for support of the construction of Advanced LIGO and construction and operation of the GEO600 detector. Additional support for Advanced LIGO was provided by the Australian Research Council. The authors gratefully acknowledge the Italian Istituto Nazionale di Fisica Nucleare (INFN), the French Centre National de la Recherche Scientifique (CNRS) and the Foundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific Research, for the construction and operation of the Virgo detector and the creation and support of the EGO consortium. The authors also gratefully acknowledge research support from these agencies as well as by the Council of Scientific and Industrial Research of India, Department of Science and Technology, India, Science & Engineering Research Board (SERB), India, Ministry of Human Resource Development, India, the Spanish Ministerio de Economía y Competitividad, the Conselleria d'Economia i Competitivitat and Conselleria d'Educació, Cultura i Universitats of the Govern de les Illes Balears, the National Science Centre of Poland, the European Commission, the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, the Hungarian Scientific Research Fund (OTKA), the Lyon Institute of Origins (LIO), the National Research Foundation of Korea, Industry Canada and the Province of Ontario through the Ministry of Economic Development and Innovation, the Natural Science and Engineering Research Council Canada, Canadian Institute for Advanced Research, the Brazilian Ministry of Science, Technology, and Innovation, Russian Foundation for Basic Research, the Leverhulme Trust, the Research Corporation, Ministry of Science and Technology (MOST), Taiwan and the Kavli Foundation. The authors gratefully acknowledge the support of the NSF, STFC, MPS, INFN, CNRS and the State of Niedersachsen/Germany for provision of computational resources. This article has been assigned the document number LIGO-P1500217.

Attached Files

Supplemental Material - 1602.03842v2-Supplement.pdf

Submitted - 1602.03842v3.pdf

Published - Abbott_2016_ApJL_833_L1.pdf


Files (2.2 MB)
Name Size Download all
765.7 kB Preview Download
1.0 MB Preview Download
423.7 kB Preview Download

Additional details

August 22, 2023
September 11, 2023