Euclid preparation. XXI. Intermediate-redshift contaminants in the search for z > 6 galaxies within the Euclid Deep Survey
- Creators
- Euclid Collaboration
- van Mierlo, S. E.1
- Caputi, K. I.1, 2
- Ashby, M.3
- Atek, H.4
- Bolzonella, M.5
- Bowler, R. A. A.6, 7
- Brammer, G.2
- Conselice, C. J.6
- Cuby, J.8
- Dayal, P.1
- Díaz-Sánchez, A.9
- Finkelstein, S. L.10
- Hoekstra, H.11
- Humphrey, A.12
- Ilbert, O.8
- McCracken, H. J.4, 13
- Milvang-Jensen, B.2
- Oesch, P. A.2, 14
- Pello, R.8
- Rodighiero, G.15
- Schirmer, M.16
- Toft, S.2
- Weaver, J. R.2
- Wilkins, S. M.17
- Willott, C. J.18
- Zamorani, G.5
- Amara, A.19
- Auricchio, N.5
- Baldi, M.20, 5, 21
- Bender, R.22, 23
- Bodendorf, C.22
- Bonino, D.24
- Branchini, E.25, 26
- Brescia, M.27
- Brinchmann, J.12
- Camera, S.28, 29, 24
- Capobianco, V.24
- Carbone, C.30
- Carretero, J.31
- Castellano, M.32
- Cavuoti, S.27, 33, 34
- Cimatti, A.20, 35
- Cledassou, R.36, 37
- Congedo, G.38
- Conversi, L.39, 40
- Copin, Y.41
- Corcione, L.24
- Courbin, F.42
- Da Silva, A.43
- Degaudenzi, H.14
- Douspis, M.44
- Dubath, F.14
- Dupac, X.40
- Dusini, S.45
- Farrens, S.46
- Ferriol, S.41
- Frailis, M.47
- Franceschi, E.5
- Franzetti, P.30
- Fumana, M.30
- Galeotta, S.47
- Garilli, B.30
- Gillard, W.48
- Gillis, B.38
- Giocoli, C.49, 21
- Grazian, A.50
- Grupp, F.22, 23
- Haugan, S. V. H.51
- Holmes, W.52
- Hormuth, F.
- Hornstrup, A.53
- Jahnke, K.16
- Kümmel, M.23
- Kiessling, A.52
- Kilbinger, M.54
- Kitching, T.55
- Kohley, R.40
- Kunz, M.14
- Kurki-Suonio, H.56
- Laureijs, R.57
- Ligori, S.24
- Lilje, P. B.51
- Lloro, I.58
- Maiorano, E.5
- Mansutti, O.47
- Marggraf, O.59
- Markovic, K.52
- Marulli, F.20, 5, 21
- Massey, R.60
- Maurogordato, S.61
- Medinaceli, E.49
- Meneghetti, M.5, 21
- Merlin, E.32
- Meylan, G.42
- Moresco, M.20, 5
- Moscardini, L.20, 5, 21
- Munari, E.47
- Niemi, S. M.57
- Padilla, C.31
- Paltani, S.14
- Pasian, F.47
- Pedersen, K.62
- Pettorino, V.54
- Pires, S.46
- Poncet, M.36
- Popa, L.63
- Pozzetti, L.5
- Raison, F.22
- Renzi, A.15, 45
- Rhodes, J.52
- Riccio, G.27
- Romelli, E.47
- Rossetti, E.20
- Saglia, R.22, 23
- Sapone, D.64
- Sartoris, B.65, 47
- Schneider, P.59
- Secroun, A.48
- Sirignano, C.15, 45
- Sirri, G.21
- Stanco, L.45
- Starck, J.-L.46
- Surace, C.8
- Tallada-Crespí, P.66
- Taylor, A. N.38
- Tereno, I.43
- Toledo-Moreo, R.9
- Torradeflot, F.66
- Tutusaus, I.14
- Valentijn, E. A.1
- Valenziano, L.5, 21
- Vassallo, T.23
- Wang, Y.67, 68
- Zacchei, A.47
- Zoubian, J.48
- Andreon, S.69
- Bardelli, S.5
- Boucaud, A.70
- Graciá-Carpio, J.22
- Maino, D.71, 30, 72
- Mauri, N.20, 21
- Mei, S.70
- Sureau, F.46
- Zucca, E.5
- Aussel, H.46
- Baccigalupi, C.65, 47, 73, 74
- Balaguera-Antolínez, A.75, 76
- Biviano, A.47, 65
- Blanchard, A.77
- Borgani, S.47, 65, 73, 78
- Bozzo, E.14
- Burigana, C.79, 49, 21
- Cabanac, R.77
- Calura, F.5
- Cappi, A.61, 5
- Carvalho, C. S.43
- Casas, S.80
- Castignani, G.20, 5
- Colodro-Conde, C.75
- Cooray, A. R.81
- Coupon, J.14
- Courtois, H. M.41
- Crocce, M.82
- Cucciati, O.5
- Davini, S.83
- Dole, H.44
- Escartin, J. A.22
- Escoffier, S.48
- Fabricius, M.22
- Farina, M.84
- Ganga, K.70
- García-Bellido, J.85
- George, K.23
- Giacomini, F.21
- Gozaliasl, G.56
- Gwyn, S.18
- Hook, I.86
- Huertas-Company, M.54, 87, 75
- Kansal, V.46
- Kashlinsky, A.88, 89
- Keihanen, E.56
- Kirkpatrick, C. C.56
- Lindholm, V.56
- Maoli, R.90, 32
- Martinelli, M.32
- Martinet, N.8
- Maturi, M.91
- Metcalf, R. B.20, 5
- Monaco, P.78, 65, 47, 73
- Morgante, G.5
- Nucita, A. A.92, 93, 94
- Patrizii, L.21
- Peel, A.42
- Pollack, J.70
- Popa, V.63
- Porciani, C.59
- Potter, D.95
- Reimberg, P.4
- Sánchez, A. G.22
- Scottez, V.4
- Sefusatti, E.47, 65, 73
- Stadel, J.95
- Teyssier, R.96
- Valiviita, J.97, 98
- Viel, M.47, 65, 74, 73
- 1. University of Groningen
- 2. University of Copenhagen
- 3. Harvard-Smithsonian Center for Astrophysics
- 4. Institut d'Astrophysique de Paris
- 5. INAF-Osservatorio di Astrofisica e Scienza dello Spazio di Bologna, Via Piero Gobetti 93/3, 40129, Bologna, Italy
- 6. University of Manchester
- 7. University of Oxford
- 8. Aix-Marseille Univ, CNRS, CNES, LAM, Marseille, France
- 9. Polytechnic University of Cartagena
- 10. The University of Texas at Austin
- 11. Leiden University
- 12. University of Porto
- 13. Sorbonne University
- 14. University of Geneva
- 15. University of Padua
- 16. Max Planck Institute for Astronomy
- 17. University of Sussex
- 18. NRC Herzberg, 5071 West Saanich Rd, Victoria, BC, V9E 2E7, Canada
- 19. University of Portsmouth
- 20. University of Bologna
- 21. INFN Sezione di Bologna
- 22. Max Planck Institute for Extraterrestrial Physics
- 23. Ludwig-Maximilians-Universität München
- 24. Osservatorio Astrofisico di Torino
- 25. Roma Tre University
- 26. INFN Sezione di Roma III
- 27. Astronomical Observatory of Capodimonte
- 28. University of Turin
- 29. INFN Sezione di Torino
- 30. Istituto di Astrofisica Spaziale e Fisica Cosmica di Milano
- 31. Institute for High Energy Physics
- 32. INAF-Osservatorio Astronomico di Roma, Via Frascati 33, 00078, Monteporzio Catone, Italy
- 33. INFN Sezione di Napoli
- 34. University of Naples Federico II
- 35. Arcetri Astrophysical Observatory
- 36. Centre National d'Études Spatiales
- 37. Institut National de Physique Nucléaire et de Physique des Particules
- 38. University of Edinburgh
- 39. European Space Research Institute
- 40. European Space Astronomy Centre
- 41. University of Lyon System
- 42. École Polytechnique Fédérale de Lausanne
- 43. University of Lisbon
- 44. Institut d'Astrophysique Spatiale
- 45. INFN Sezione di Padova
- 46. Astrophysique, Instrumentation et Modélisation
- 47. Trieste Astronomical Observatory
- 48. Center for Particle Physics of Marseilles
- 49. National Institute for Astrophysics
- 50. Osservatorio Astronomico di Padova
- 51. University of Oslo
- 52. Jet Propulsion Lab
- 53. Technical University of Denmark
- 54. University of Paris
- 55. University College London
- 56. University of Helsinki
- 57. European Space Research and Technology Centre
- 58. Netherlands Institute for Radio Astronomy
- 59. University of Bonn
- 60. Durham University
- 61. Lagrange Laboratory
- 62. Aarhus University
- 63. Institute of Space Science
- 64. University of Chile
- 65. Institute for Fundamental Physics of the Universe
- 66. Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas
- 67. Infrared Processing and Analysis Center
- 68. California Institute of Technology
- 69. Brera Astronomical Observatory
- 70. Astroparticle and Cosmology Laboratory
- 71. University of Milan
- 72. INFN Sezione di Milano
- 73. INFN Sezione di Trieste
- 74. International School for Advanced Studies
- 75. Instituto de Astrofísica de Canarias
- 76. University of La Laguna
- 77. Research Institute in Astrophysics and Planetology
- 78. University of Trieste
- 79. University of Ferrara
- 80. RWTH Aachen University
- 81. University of California, Irvine
- 82. Institute of Space Sciences
- 83. INFN Sezione di Genova
- 84. Institute for Space Astrophysics and Planetology
- 85. Institute for Theoretical Physics
- 86. Lancaster University
- 87. Laboratory for Studies of Radiation and Matter in Astrophysics and Atmospheres
- 88. Goddard Space Flight Center
- 89. Science Systems and Applications (United States)
- 90. Sapienza University of Rome
- 91. Heidelberg University
- 92. INAF-Sezione di Lecce, c/o Dipartimento Matematica e Fisica, Via per Arnesano, 73100, Lecce, Italy
- 93. INFN Sezione di Lecce
- 94. University of Salento
- 95. University of Zurich
- 96. Princeton University
- 97. University of Jyväskylä
- 98. Helsinki Institute of Physics
Abstract
Context. The Euclid mission is expected to discover thousands of z > 6 galaxies in three deep fields, which together will cover a ∼50 deg² area. However, the limited number of Euclid bands (four) and the low availability of ancillary data could make the identification of z > 6 galaxies challenging. Aims. In this work we assess the degree of contamination by intermediate-redshift galaxies (z = 1–5.8) expected for z > 6 galaxies within the Euclid Deep Survey. Methods. This study is based on ∼176 000 real galaxies at z = 1–8 in a ∼0.7 deg² area selected from the UltraVISTA ultra-deep survey and ∼96 000 mock galaxies with 25.3 ≤ H < 27.0, which altogether cover the range of magnitudes to be probed in the Euclid Deep Survey. We simulate Euclid and ancillary photometry from fiducial 28-band photometry and fit spectral energy distributions to various combinations of these simulated data. Results. We demonstrate that identifying z > 6 galaxies with Euclid data alone will be very effective, with a z > 6 recovery of 91% (88%) for bright (faint) galaxies. For the UltraVISTA-like bright sample, the percentage of z = 1–5.8 contaminants amongst apparent z > 6 galaxies as observed with Euclid alone is 18%, which is reduced to 4% (13%) by including ultra-deep Rubin (Spitzer) photometry. Conversely, for the faint mock sample, the contamination fraction with Euclid alone is considerably higher at 39%, and minimised to 7% when including ultra-deep Rubin data. For UltraVISTA-like bright galaxies, we find that Euclid (I_E − Y_E) > 2.8 and (Y_E − J_E) < 1.4 colour criteria can separate contaminants from true z > 6 galaxies, although these are applicable to only 54% of the contaminants as many have unconstrained (I_E − Y_E) colours. In the best scenario, these cuts reduce the contamination fraction to 1% whilst preserving 81% of the fiducial z > 6 sample. For the faint mock sample, colour cuts are infeasible; we find instead that a 5σ detection threshold requirement in at least one of the Euclid near-infrared bands reduces the contamination fraction to 25%.
Copyright and License
© S. E. van Mierlo et al. 2022.
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Acknowledgement
Based on data products from observations conducted with ESO Telescopes at the Paranal Observatory under ESO program ID 179.A-2005 and on data products produced by TERAPIX and the Cambridge Astronomy Survey Unit on behalf of the UltraVISTA consortium. Also based in part on observations carried out with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Also based on observations carried out by NASA/ESA Hubble Space Telescope, obtained and archived at the Space Telescope Science Institute; and the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan. This research has made use of the NASA/IPAC Infrared Science Archive, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. SvM and KC acknowledge funding from the European Research Council through the award of the Consolidator Grant ID 681627-BUILDUP. PD acknowledges support from the European Research Council’s starting grant ERC StG-717001 (DELPHI), from the NWO grant 016.VIDI.189.162 (ODIN) and the European Commission’s and University of Groningen’s CO-FUND Rosalind Franklin program. The Euclid Consortium acknowledges the European Space Agency and a number of agencies and institutes that have supported the development of Euclid, in particular the Academy of Finland, the Agenzia Spaziale Italiana, the Belgian Science Policy, the Canadian Euclid Consortium, the French Centre National d’Etudes Spatiales, the Deutsches Zentrum für Luft- und Raumfahrt, the Danish Space Research Institute, the Fundação para a Ciência e a Tecnologia, the Ministerio de Economia y Competitividad, the National Aeronautics and Space Administration, the National Astronomical Observatory of Japan, the Netherlandse Onderzoekschool Voor Astronomie, the Norwegian Space Agency, the Romanian Space Agency, the State Secretariat for Education, Research and Innovation (SERI) at the Swiss Space Office (SSO), and the United Kingdom Space Agency. A complete and detailed list is available on the Euclid web site (http://www.euclid-ec.org). We thank Smaran Deshmukh for useful discussions on the SMUVS catalogue photometry. We thank Marc Sauvage for carefully reading the manuscript and providing constructive comments for the Euclid Consortium internal review.
Funding
SvM and KC acknowledge funding from the European Research Council through the award of the Consolidator Grant ID 681627-BUILDUP. PD acknowledges support from the European Research Council’s starting grant ERC StG-717001 (DELPHI), from the NWO grant 016.VIDI.189.162 (ODIN) and the European Commission’s and University of Groningen’s CO-FUND Rosalind Franklin program.
Files
Name | Size | Download all |
---|---|---|
md5:1e4c5df2e605230ee9b7487379645c73
|
6.3 MB | Preview Download |
md5:d72ec7a9a60c2afeaf7a9bccef380a59
|
149.5 kB | Preview Download |
Additional details
- European Research Council
- 681627
- European Research Council
- 717001
- Dutch Research Council
- 016.VIDI.189.162
- European Commission
- University of Groningen
- Jet Propulsion Laboratory
- California Institute of Technology
- National Aeronautics and Space Administration
- Accepted
-
2022-07-18Accepted
- Available
-
2022-10-26Published online
- Caltech groups
- Infrared Processing and Analysis Center (IPAC)
- Publication Status
- Published