Published October 2022 | Version Published
Journal Article Open

Euclid preparation. XXI. Intermediate-redshift contaminants in the search for z > 6 galaxies within the Euclid Deep Survey

Creators

  • 1. ROR icon University of Groningen
  • 2. ROR icon University of Copenhagen
  • 3. ROR icon Harvard-Smithsonian Center for Astrophysics
  • 4. ROR icon Institut d'Astrophysique de Paris
  • 5. INAF-Osservatorio di Astrofisica e Scienza dello Spazio di Bologna, Via Piero Gobetti 93/3, 40129, Bologna, Italy
  • 6. ROR icon University of Manchester
  • 7. ROR icon University of Oxford
  • 8. Aix-Marseille Univ, CNRS, CNES, LAM, Marseille, France
  • 9. ROR icon Polytechnic University of Cartagena
  • 10. ROR icon The University of Texas at Austin
  • 11. ROR icon Leiden University
  • 12. ROR icon University of Porto
  • 13. ROR icon Sorbonne University
  • 14. ROR icon University of Geneva
  • 15. ROR icon University of Padua
  • 16. ROR icon Max Planck Institute for Astronomy
  • 17. ROR icon University of Sussex
  • 18. NRC Herzberg, 5071 West Saanich Rd, Victoria, BC, V9E 2E7, Canada
  • 19. ROR icon University of Portsmouth
  • 20. ROR icon University of Bologna
  • 21. ROR icon INFN Sezione di Bologna
  • 22. ROR icon Max Planck Institute for Extraterrestrial Physics
  • 23. ROR icon Ludwig-Maximilians-Universität München
  • 24. ROR icon Osservatorio Astrofisico di Torino
  • 25. ROR icon Roma Tre University
  • 26. ROR icon INFN Sezione di Roma III
  • 27. ROR icon Astronomical Observatory of Capodimonte
  • 28. ROR icon University of Turin
  • 29. ROR icon INFN Sezione di Torino
  • 30. ROR icon Istituto di Astrofisica Spaziale e Fisica Cosmica di Milano
  • 31. ROR icon Institute for High Energy Physics
  • 32. INAF-Osservatorio Astronomico di Roma, Via Frascati 33, 00078, Monteporzio Catone, Italy
  • 33. ROR icon INFN Sezione di Napoli
  • 34. ROR icon University of Naples Federico II
  • 35. ROR icon Arcetri Astrophysical Observatory
  • 36. ROR icon Centre National d'Études Spatiales
  • 37. ROR icon Institut National de Physique Nucléaire et de Physique des Particules
  • 38. ROR icon University of Edinburgh
  • 39. ROR icon European Space Research Institute
  • 40. ROR icon European Space Astronomy Centre
  • 41. ROR icon University of Lyon System
  • 42. ROR icon École Polytechnique Fédérale de Lausanne
  • 43. ROR icon University of Lisbon
  • 44. ROR icon Institut d'Astrophysique Spatiale
  • 45. ROR icon INFN Sezione di Padova
  • 46. ROR icon Astrophysique, Instrumentation et Modélisation
  • 47. ROR icon Trieste Astronomical Observatory
  • 48. ROR icon Center for Particle Physics of Marseilles
  • 49. ROR icon National Institute for Astrophysics
  • 50. ROR icon Osservatorio Astronomico di Padova
  • 51. ROR icon University of Oslo
  • 52. ROR icon Jet Propulsion Lab
  • 53. ROR icon Technical University of Denmark
  • 54. ROR icon University of Paris
  • 55. ROR icon University College London
  • 56. ROR icon University of Helsinki
  • 57. ROR icon European Space Research and Technology Centre
  • 58. ROR icon Netherlands Institute for Radio Astronomy
  • 59. ROR icon University of Bonn
  • 60. ROR icon Durham University
  • 61. ROR icon Lagrange Laboratory
  • 62. ROR icon Aarhus University
  • 63. ROR icon Institute of Space Science
  • 64. ROR icon University of Chile
  • 65. ROR icon Institute for Fundamental Physics of the Universe
  • 66. ROR icon Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas
  • 67. ROR icon Infrared Processing and Analysis Center
  • 68. ROR icon California Institute of Technology
  • 69. ROR icon Brera Astronomical Observatory
  • 70. ROR icon Astroparticle and Cosmology Laboratory
  • 71. ROR icon University of Milan
  • 72. ROR icon INFN Sezione di Milano
  • 73. ROR icon INFN Sezione di Trieste
  • 74. ROR icon International School for Advanced Studies
  • 75. ROR icon Instituto de Astrofísica de Canarias
  • 76. ROR icon University of La Laguna
  • 77. ROR icon Research Institute in Astrophysics and Planetology
  • 78. ROR icon University of Trieste
  • 79. ROR icon University of Ferrara
  • 80. ROR icon RWTH Aachen University
  • 81. ROR icon University of California, Irvine
  • 82. ROR icon Institute of Space Sciences
  • 83. ROR icon INFN Sezione di Genova
  • 84. ROR icon Institute for Space Astrophysics and Planetology
  • 85. ROR icon Institute for Theoretical Physics
  • 86. ROR icon Lancaster University
  • 87. ROR icon Laboratory for Studies of Radiation and Matter in Astrophysics and Atmospheres
  • 88. ROR icon Goddard Space Flight Center
  • 89. ROR icon Science Systems and Applications (United States)
  • 90. ROR icon Sapienza University of Rome
  • 91. ROR icon Heidelberg University
  • 92. INAF-Sezione di Lecce, c/o Dipartimento Matematica e Fisica, Via per Arnesano, 73100, Lecce, Italy
  • 93. ROR icon INFN Sezione di Lecce
  • 94. ROR icon University of Salento
  • 95. ROR icon University of Zurich
  • 96. ROR icon Princeton University
  • 97. ROR icon University of Jyväskylä
  • 98. ROR icon Helsinki Institute of Physics

Abstract

Context. The Euclid mission is expected to discover thousands of z > 6 galaxies in three deep fields, which together will cover a ∼50 deg² area. However, the limited number of Euclid bands (four) and the low availability of ancillary data could make the identification of z > 6 galaxies challenging. Aims. In this work we assess the degree of contamination by intermediate-redshift galaxies (z = 1–5.8) expected for z > 6 galaxies within the Euclid Deep Survey. Methods. This study is based on ∼176 000 real galaxies at z = 1–8 in a ∼0.7 deg² area selected from the UltraVISTA ultra-deep survey and ∼96 000 mock galaxies with 25.3 ≤ H < 27.0, which altogether cover the range of magnitudes to be probed in the Euclid Deep Survey. We simulate Euclid and ancillary photometry from fiducial 28-band photometry and fit spectral energy distributions to various combinations of these simulated data. Results. We demonstrate that identifying z > 6 galaxies with Euclid data alone will be very effective, with a z > 6 recovery of 91% (88%) for bright (faint) galaxies. For the UltraVISTA-like bright sample, the percentage of z = 1–5.8 contaminants amongst apparent z > 6 galaxies as observed with Euclid alone is 18%, which is reduced to 4% (13%) by including ultra-deep Rubin (Spitzer) photometry. Conversely, for the faint mock sample, the contamination fraction with Euclid alone is considerably higher at 39%, and minimised to 7% when including ultra-deep Rubin data. For UltraVISTA-like bright galaxies, we find that Euclid (I_E − Y_E) > 2.8 and (Y_E − J_E) < 1.4 colour criteria can separate contaminants from true z > 6 galaxies, although these are applicable to only 54% of the contaminants as many have unconstrained (I_E − Y_E) colours. In the best scenario, these cuts reduce the contamination fraction to 1% whilst preserving 81% of the fiducial z > 6 sample. For the faint mock sample, colour cuts are infeasible; we find instead that a 5σ detection threshold requirement in at least one of the Euclid near-infrared bands reduces the contamination fraction to 25%.

Copyright and License

© S. E. van Mierlo et al. 2022.

Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Acknowledgement

Based on data products from observations conducted with ESO Telescopes at the Paranal Observatory under ESO program ID 179.A-2005 and on data products produced by TERAPIX and the Cambridge Astronomy Survey Unit on behalf of the UltraVISTA consortium. Also based in part on observations carried out with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Also based on observations carried out by NASA/ESA Hubble Space Telescope, obtained and archived at the Space Telescope Science Institute; and the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan. This research has made use of the NASA/IPAC Infrared Science Archive, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. SvM and KC acknowledge funding from the European Research Council through the award of the Consolidator Grant ID 681627-BUILDUP. PD acknowledges support from the European Research Council’s starting grant ERC StG-717001 (DELPHI), from the NWO grant 016.VIDI.189.162 (ODIN) and the European Commission’s and University of Groningen’s CO-FUND Rosalind Franklin program. The Euclid Consortium acknowledges the European Space Agency and a number of agencies and institutes that have supported the development of Euclid, in particular the Academy of Finland, the Agenzia Spaziale Italiana, the Belgian Science Policy, the Canadian Euclid Consortium, the French Centre National d’Etudes Spatiales, the Deutsches Zentrum für Luft- und Raumfahrt, the Danish Space Research Institute, the Fundação para a Ciência e a Tecnologia, the Ministerio de Economia y Competitividad, the National Aeronautics and Space Administration, the National Astronomical Observatory of Japan, the Netherlandse Onderzoekschool Voor Astronomie, the Norwegian Space Agency, the Romanian Space Agency, the State Secretariat for Education, Research and Innovation (SERI) at the Swiss Space Office (SSO), and the United Kingdom Space Agency. A complete and detailed list is available on the Euclid web site (http://www.euclid-ec.org). We thank Smaran Deshmukh for useful discussions on the SMUVS catalogue photometry. We thank Marc Sauvage for carefully reading the manuscript and providing constructive comments for the Euclid Consortium internal review.

Funding

SvM and KC acknowledge funding from the European Research Council through the award of the Consolidator Grant ID 681627-BUILDUP. PD acknowledges support from the European Research Council’s starting grant ERC StG-717001 (DELPHI), from the NWO grant 016.VIDI.189.162 (ODIN) and the European Commission’s and University of Groningen’s CO-FUND Rosalind Franklin program.

Errata

The author list was incorrect in the published version. The name of the collaboration has been added here: https://doi.org/10.1051/0004-6361/202243950e

Files

aa43950-22.pdf

Files (6.4 MB)

Name Size Download all
md5:1e4c5df2e605230ee9b7487379645c73
6.3 MB Preview Download
md5:d72ec7a9a60c2afeaf7a9bccef380a59
149.5 kB Preview Download

Additional details

Related works

Is corrected by
Erratum: 10.1051/0004-6361/202243950e (DOI)
Is new version of
Discussion Paper: arXiv:2205.02871 (arXiv)

Funding

European Research Council
681627
European Research Council
717001
Dutch Research Council
016.VIDI.189.162
European Commission
University of Groningen
Jet Propulsion Laboratory
California Institute of Technology
National Aeronautics and Space Administration

Dates

Accepted
2022-07-18
Accepted
Available
2022-10-26
Published online

Caltech Custom Metadata

Caltech groups
Infrared Processing and Analysis Center (IPAC)
Publication Status
Published