Published October 2023 | Published
Journal Article Open

Broadband Quantum Enhancement of the LIGO Detectors with Frequency-Dependent Squeezing

Ganapathy, D. ORCID icon
Jia, W. ORCID icon
Nakano, M. ORCID icon
Xu, V. ORCID icon
Aritomi, N. ORCID icon
Cullen, T. ORCID icon
Kijbunchoo, N. ORCID icon
Dwyer, S. E. ORCID icon
Mullavey, A. ORCID icon
McCuller, L.1 ORCID icon
Abbott, R. ORCID icon
Abouelfettouh, I.
Adhikari, R. X.1 ORCID icon
Ananyeva, A.
Appert, S.
Arai, K. ORCID icon
Aston, S. M. ORCID icon
Ball, M. ORCID icon
Ballmer, S. W. ORCID icon
Barker, D.
Barsotti, L. ORCID icon
Berger, B. K. ORCID icon
Betzwieser, J. ORCID icon
Bhattacharjee, D. ORCID icon
Billingsley, G. ORCID icon
Biscans, S. ORCID icon
Bode, N. ORCID icon
Bonilla, E. ORCID icon
Bossilkov, V. ORCID icon
Branch, A.
Brooks, A. F. ORCID icon
Brown, D. D.
Bryant, J.
Cahillane, C. ORCID icon
Cao, H. ORCID icon
Capote, E.
Clara, F.
Collins, J.
Compton, C. M. ORCID icon
Cottingham, R.
Coyne, D. C. ORCID icon
Crouch, R.
Csizmazia, J.
Dartez, L. P. ORCID icon
Demos, N. ORCID icon
Dohmen, E.
Driggers, J. C. ORCID icon
Effler, A. ORCID icon
Ejlli, A. ORCID icon
Etzel, T.
Evans, M.
Feicht, J. ORCID icon
Frey, R. ORCID icon
Frischhertz, W.
Fritschel, P. ORCID icon
Frolov, V. V.
Fulda, P. ORCID icon
Fyffe, M.
Gateley, B.
Giaime, J. A. ORCID icon
Giardina, K. D. ORCID icon
Glanzer, J.
Goetz, E. ORCID icon
Goetz, R.
Goodwin-Jones, A. W. ORCID icon
Gras, S.
Gray, C.
Griffith, D.
Grote, H. ORCID icon
Guidry, T.
Hall, E. D. ORCID icon
Hanks, J.
Hanson, J.
Heintze, M. C.
Helmling-Cornell, A. F. ORCID icon
Holland, N. A. ORCID icon
Hoyland, D.
Huang, H. Y. ORCID icon
Inoue, Y. ORCID icon
James, A. L. ORCID icon
Jennings, A.
Karat, S.
Karki, S. ORCID icon
Kasprzack, M. ORCID icon
Kawabe, K. ORCID icon
King, P. J.
Kissel, J. S. ORCID icon
Komori, K. ORCID icon
Kontos, A. ORCID icon
Kumar, R. ORCID icon
Kuns, K. ORCID icon
Landry, M.
Lantz, B. ORCID icon
Laxen, M. ORCID icon
Lee, K.
Lesovsky, M.
Llamas, F.
Lormand, M.
Loughlin, H. A. ORCID icon
Macas, R. ORCID icon
MacInnis, M. ORCID icon
Makarem, C. N. ORCID icon
Mannix, B.
Mansell, G. L. ORCID icon
Martin, R. M. ORCID icon
Mason, K.
Matichard, F. ORCID icon
Mavalvala, N.
Maxwell, N.
McCarrol, G.
McCarthy, R.
McClelland, D. E. ORCID icon
McCormick, S.
McRae, T. ORCID icon
Mera, F.
Merilh, E. L.
Meylahn, F. ORCID icon
Mittleman, R.
Moraru, D.
Moreno, G.
Nelson, T. J. N.
Neunzert, A. ORCID icon
Notte, J.
Oberling, J. ORCID icon
O'Hanlon, T.
Osthelder, C. ORCID icon
Ottaway, D. J. ORCID icon
Overmier, H.
Parker, W. ORCID icon
Pele, A. ORCID icon
Pham, H.
Pirello, M. ORCID icon
Quetschke, V. ORCID icon
Ramirez, K. E.
Reyes, J.
Richardson, J. W. ORCID icon
Robinson, M.
Rollins, J. G. ORCID icon
Romel, C. L.
Romie, J. H.
Ross, M. P. ORCID icon
Ryan, K.
Sadecki, T.
Sanchez, A.
Sanchez, E. J.
Sanchez, L. E.
Savage, R. L. ORCID icon
Schaetzl, D.
Schiworski, M. G. ORCID icon
Schnabel, R. ORCID icon
Schofield, R. M. S.
Schwartz, E. ORCID icon
Sellers, D.
Shaffer, T.
Short, R. W.
Sigg, D. ORCID icon
Slagmolen, B. J. J. ORCID icon
Soike, C.
Soni, S. ORCID icon
Srivastava, V.
Sun, L. ORCID icon
Tanner, D. B. ORCID icon
Thomas, M.
Thomas, P.
Thorne, K. A. ORCID icon
Torrie, C. I.
Traylor, G.
Ubhi, A. S. ORCID icon
Vajente, G. ORCID icon
Vanosky, J.
Vecchio, A. ORCID icon
Veitch, P. J. ORCID icon
Vibhute, A. M.
von Reis, E. R. G.
Warner, J.
Weaver, B. ORCID icon
Weiss, R.
Whittle, C.
Willke, B. ORCID icon
Wipf, C. C.
Yamamoto, H. ORCID icon
Zhang, L. ORCID icon
Zucker, M. E. ORCID icon
  • 1. ROR icon California Institute of Technology

Abstract

Quantum noise imposes a fundamental limitation on the sensitivity of interferometric gravitational-wave detectors like LIGO, manifesting as shot noise and quantum radiation pressure noise. Here, we present the first realization of frequency-dependent squeezing in full-scale gravitational-wave detectors, resulting in the reduction of both shot noise and quantum radiation pressure noise, with broadband detector enhancement from tens of hertz to several kilohertz. In the LIGO Hanford detector, squeezing reduced the detector noise amplitude by a factor of 1.6 (4.0 dB) near 1 kHz; in the Livingston detector, the noise reduction was a factor of 1.9 (5.8 dB). These improvements directly impact LIGO's scientific output for high-frequency sources (e.g., binary neutron star postmerger physics). The improved low-frequency sensitivity, which boosted the detector range by 15%–18% with respect to no squeezing, corresponds to an increase in the astrophysical detection rate of up to 65%. Frequency-dependent squeezing was enabled by the addition of a 300-meter-long filter cavity to each detector as part of the LIGO A+ upgrade.

Copyright and License

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Acknowledgement

The authors gratefully acknowledge the support of the United States National Science Foundation (NSF) for the construction and operation of the LIGO Laboratory and Advanced LIGO as well as the Science and Technology Facilities Council (STFC) of the United Kingdom, and the Max-Planck-Society (MPS) for support of the construction of Advanced LIGO. Additional support for Advanced LIGO was provided by the Australian Research Council. The authors acknowledge the LIGO Scientific Collaboration Fellows program for additional support. LIGO was constructed by the California Institute of Technology and Massachusetts Institute of Technology with funding from the National Science Foundation and operates under Cooperative Agreement No. PHY-18671764464. Advanced LIGO was built under Grant No. PHY-18680823459. The A+ Upgrade to Advanced LIGO is supported by U.S. NSF Grant No. PHY-1834382 and United Kingdom STFC Grant No. ST/S00246/1, with additional support from the Australian Research Council. The authors thank Dennis Wilken, Vivishek Sudhir, James Lough, and Kim Burtnyk for carefully reading the manuscript.

Files

PhysRevX.13.041021.pdf
Files (3.0 MB)
Name Size Download all
md5:2c1902062522bccc9df1655f75ecd077
3.0 MB Preview Download

Additional details

Created:
November 1, 2023
Modified:
January 19, 2024