Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published June 2009 | Published
Journal Article Open

The Observations of Redshift Evolution in Large-Scale Environments (ORELSE) Survey. I. The Survey Design and First Results on CL 0023+0423 at z = 0.84 and RX J1821.6+6827 at z = 0.82

Abstract

We present the Observations of Redshift Evolution in Large-Scale Environments (ORELSE) Survey, a systematic search for structure on scales greater than 10 h^(–1)_70 Mpc around 20 well-known clusters at redshifts of 0.6 < z < 1.3. The goal of the survey is to examine a statistical sample of dynamically active clusters and large-scale structures in order to quantify galaxy properties over the full range of local and global environments. We describe the survey design, the cluster sample, and our extensive observational data covering at least 25' around each target cluster. We use adaptively smoothed red galaxy density maps from our wide-field optical imaging to identify candidate groups/clusters and intermediate-density large-scale filaments/walls in each cluster field. Because photometric techniques (such as photometric redshifts, statistical overdensities, and richness estimates) can be highly uncertain, the crucial component of this survey is the unprecedented amount of spectroscopic coverage. We are using the wide-field, multiobject spectroscopic capabilities of the Deep Multiobject Imaging Spectrograph to obtain 100-200+ confirmed cluster members in each field. Our survey has already discovered the Cl 1604 supercluster at z ≈ 0.9, a structure which contains at least eight groups and clusters and spans 13 Mpc × 100 Mpc. Here, we present the results on the large-scale environments of two additional clusters, Cl 0023+0423 at z = 0.84 and RX J1821.6+6827 at z = 0.82, which highlight the diversity of global properties at these redshifts. The optically selected Cl 0023+0423 is a four-way group-group merger with constituent groups having measured velocity dispersions between 206 and 479 km s^–1. The galaxy population is dominated by blue, star-forming galaxies, with 80% of the confirmed members showing [O II] emission. The strength of the Hδ line in a composite spectrum of 138 members indicates a substantial contribution from recent starbursts to the overall galaxy population. In contrast, the X-ray-selected RX J1821.6+6827 is a largely isolated, massive cluster with a measured velocity dispersion of 926 ± 77 km s^(–1). The cluster exhibits a well-defined red sequence with a large quiescent galaxy population. The results from these two targets, along with preliminary findings on other ORELSE clusters, suggest that optical selection may be more effective than X-ray surveys at detecting less-evolved, dynamically active systems at these redshifts.

Additional Information

© 2009 The American Astronomical Society. Received 2008 August 26; accepted 2009 March 29; published 2009 April 29. We thank the anonymous referee for very constructive comments on this manuscript. This material is based upon work supported by the National Aeronautics and Space Administration under Award NNG05GC34ZG for the Long Term Space Astrophysics Program. The spectrographic data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. The authors recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. The observing staff, telescope operators, and instrument scientists at Keck provided a great deal of assistance.

Attached Files

Published - Lubin2009p4459Astron_J.pdf

Files

Lubin2009p4459Astron_J.pdf
Files (3.2 MB)
Name Size Download all
md5:b0fb261fa6835b1ece84dc344bf59311
3.2 MB Preview Download

Additional details

Created:
August 21, 2023
Modified:
October 18, 2023