Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published June 28, 2017 | Supplemental Material + Accepted Version
Journal Article Open

4S-Hydroxylation of insulin at ProB28 accelerates hexamer dissociation and delays fibrillation

Abstract

Daily injections of insulin provide lifesaving benefits to millions of diabetics. But currently available prandial insulins are suboptimal: The onset of action is delayed by slow dissociation of the insulin hexamer in the subcutaneous space, and insulin forms amyloid fibrils upon storage in solution. Here we show, through the use of non-canonical amino acid mutagenesis, that replacement of the proline residue at position 28 of the insulin B-chain (ProB28) by (4S)-hydroxyproline (Hzp) yields an active form of insulin that dissociates more rapidly, and fibrillates more slowly, than the wild-type protein. Crystal structures of dimeric and hexameric insulin preparations suggest that a hydrogen bond between the hydroxyl group of Hzp and a backbone amide carbonyl positioned across the dimer interface may be responsible for the altered behavior. The effects of hydroxylation are stereospecific; replacement of ProB28 by (4R)-hydroxyproline (Hyp) causes little change in the rates of fibrillation and hexamer disassociation. These results demonstrate a new approach that fuses the concepts of medicinal chemistry and protein design, and paves the way to further engineering of insulin and other therapeutic proteins.

Additional Information

© 2017 American Chemical Society. Received: January 24, 2017. Published: June 9, 2017. We thank J. T. Kaiser, P. Nikolovski, S. Russi, S. Virgil, M. Shahgholi, A. Lakshmanan, and the scientific staff of Beamline 12-2 at the Stanford Synchrotron Radiation Laboratory for assistance. We thank W. Glenn, A. Mahdavi, and T. Hoeg-Jensen for discussions. The work was supported by the Novo Nordisk Foundation. Fellowships from Amgen and from the Natural Sciences and Engineering Research Council of Canada (NSERC, PGS-D) provided partial support for S.A.L. and K.Y.F., respectively. J.K.B.C. acknowledges support of the Resnick Sustainability Institute (Caltech). The authors declare the following competing financial interest(s): S.A.L., K.Y.F., and D.A.T are inventors on a related patent application.

Attached Files

Accepted Version - jacs_2E7b00794.pdf

Accepted Version - nihms932453.pdf

Supplemental Material - ja7b00794_si_001.pdf

Files

jacs_2E7b00794.pdf
Files (6.0 MB)
Name Size Download all
md5:b5efa9428d6d4cef5077b80769bf060d
1.5 MB Preview Download
md5:884db2debfb90164e1727acc7a473a31
3.9 MB Preview Download
md5:2e4d1adac340f81882e50cbd912bb056
615.6 kB Preview Download

Additional details

Created:
August 19, 2023
Modified:
October 25, 2023