Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published August 2016 | public
Journal Article

A Variational Framework for Spectral Approximations of Kohn–Sham Density Functional Theory


We reformulate the Kohn–Sham density functional theory (KSDFT) as a nested variational problem in the one-particle density operator, the electrostatic potential and a field dual to the electron density. The corresponding functional is linear in the density operator and thus amenable to spectral representation. Based on this reformulation, we introduce a new approximation scheme, termed spectral binning, which does not require smoothing of the occupancy function and thus applies at arbitrarily low temperatures. We prove convergence of the approximate solutions with respect to spectral binning and with respect to an additional spatial discretization of the domain.

Additional Information

© 2016 Springer Berlin Heidelberg.

Additional details

August 20, 2023
October 18, 2023