Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published February 22, 2008 | Supplemental Material
Journal Article Open

A Photon Turnstile Dynamically Regulated by One Atom


Beyond traditional nonlinear optics with large numbers of atoms and photons, qualitatively new phenomena arise in a quantum regime of strong interactions between single atoms and photons. By using a microscopic optical resonator, we achieved such interactions and demonstrated a robust, efficient mechanism for the regulated transport of photons one by one. With critical coupling of the input light, a single atom within the resonator dynamically controls the cavity output conditioned on the photon number at the input, thereby functioning as a photon turnstile. We verified the transformation from a Poissonian to a sub-Poissonian photon stream by photon counting measurements of the input and output fields. The results have applications in quantum information science, including for controlled interactions of single light quanta and for scalable quantum processing on atom chips.

Additional Information

© 2008 American Association for the Advancement of Science. Received for publication 29 October 2007. Accepted for publication 9 January 2008. We gratefully acknowledge the contributions of S. Kelber, J. Petta, C. Regal, and E. Wilcut-Connolly. This research is supported by NSF, the Intelligence Advanced Research Projects Activity, and Northrop Grumman Space Technology.

Attached Files

Supplemental Material - Dayan.SOM.pdf


Files (273.0 kB)
Name Size Download all
273.0 kB Preview Download

Additional details

August 19, 2023
October 19, 2023