The CMS barrel timing layer: test beam confirmation of module timing performance
Creators
-
Addesa, F.1
-
Akrap, P.2, 3
-
Albert, A.4
-
Allmond, B.5
- Anderson, T.6
-
Babbar, J.7, 8
-
Baranyai, D.9
-
Barria, P.2
-
Basile, C.2, 3
-
Benaglia, A.10
- Benato, A.11
-
Benettoni, M.11
- Besancon, M.12
-
Bez, N.11
- Bhattacharya, S.4
- Bianco, R.2
-
Blend, D.13
-
Boletti, A.14
-
Bornheim, A.4
- Bugalho, R.14
-
Bulla, A.11, 15
-
Cardwell, B.6
-
Carlin, R.11, 16
-
Casarsa, M.7
-
Cetorelli, F.10, 17
-
Cossutti, F.7
- Cox, B.6
-
Da Molin, G.14
-
De Guio, F.10, 17
-
De Leo, K.7
-
De Riggi, F.2, 3
- Debbins, P.13
-
Del Re, D.2, 3
-
Delli Gatti, R.7, 8
-
Dervan, J.18
- Devouge, P.12
-
Dreimanis, K.19
-
Eberlins, O.M.19
-
Errico, F.2
- Fernandez, E.6
-
Funk, W.20
- Gaile, A.19
-
Gallinaro, M.14
-
Gargiulo, R.2, 3
-
Gerosa, R.10, 17
-
Ghezzi, A.10, 17
- Gyongyosi, B.9
- Hao, Z.4
- Heering, A.H.21
- Hu, Z.22
- Isocrate, R.11
- Jose, M.6
- Karneyeu, A.21
- Kim, M.S.23
-
Krishna, A.18
-
Kronheim, B.24
-
Köseyan, O.K.13
-
Ledovskoy, A.6
- Li, L.25
- Li, Z.25
- Lohezic, V.12
- Lombardi, F.2, 3
-
Lucchini, M.T.10, 17
-
Malberti, M.10
- Mao, Y.25
-
Maravin, Y.5
-
Marzocchi, B.18
- Mazzaro, D.11
- Menon Raghunandanan, R.6
-
Meridiani, P.2
-
Munoz Diaz, C.19
- Musienko, Y.21
-
Nargelas, S.26
- Narváez, L.L.4
-
Neu, C.6
-
Organtini, G.2, 3
- Orimoto, T.18
-
Osite, D.19
-
Paganoni, M.10, 17
-
Palluotto, S.10, 17
- Palmer, C.24
-
Palmeri, N.2, 3
-
Pandolfi, F.2
- Paramatti, R.2, 3
-
Pauletto, T.2, 3
-
Perego, A.10, 17
-
Pikurs, G.19
-
Pizzati, G.10, 17
-
Plese, R.19
-
Quaranta, C.2, 3
-
Reales Gutiérrez, G.4
-
Redaelli, N.10
-
Ronchi, S.10, 17
- Rossin, R.11, 16
- Sahin, M.Ö.12
-
Santanastasio, F.2, 3
- Schmidt, I.13
-
Sidiropoulos Kontos, D.19
- Sievert, T.4
- Silva, R.14
- Simmerling, P.4
-
Soffi, L.2
-
Solanki, P.27
- Sorrentino, G.5
-
Spiropulu, M.4
-
Strautnieks, N.R.28
-
Sun, X.25
-
Szabo, D.D.9
-
Tabarelli de Fatis, T.10, 17
-
Tamulaitis, G.26
- Taylor, R.5
-
Titov, M.12
-
Tosi, M.11, 16
- Trabucco, G.2, 3
- Tsirou, A.20
-
Tully, C.1
- Turcato, M.11
-
Ujvari, B.9
- Varela, J.14
- Veronese, F.11
- Vladimirov, V.2, 3
- Wang, J.25
- Wayne, M.21
-
White, S.6
- Wu, Z.6
- Wulff, J.W.14
- Wynne, R.A.4
-
Zhang, L.10, 17, 25
- Zhang, M.25
- Zilizi, G.9
-
1.
Princeton University
-
2.
INFN Sezione di Roma I
-
3.
Sapienza University of Rome
-
4.
California Institute of Technology
-
5.
Kansas State University
-
6.
University of Virginia
-
7.
INFN Sezione di Trieste
-
8.
University of Trieste
-
9.
University of Debrecen
-
10.
INFN Sezione di Milano Bicocca
-
11.
INFN Sezione di Padova
-
12.
University of Paris-Saclay
-
13.
University of Iowa
-
14.
Laboratory of Instrumentation and Experimental Particles Physics
-
15.
University of Cagliari
-
16.
University of Padua
-
17.
University of Milano-Bicocca
-
18.
Northeastern University
-
19.
Riga Technical University
-
20.
European Organization for Nuclear Research
-
21.
University of Notre Dame
-
22.
Tsinghua University
-
23.
Gangneung–Wonju National University
-
24.
University of Maryland, College Park
-
25.
Peking University
-
26.
Vilnius University
-
27.
University of Pisa
-
28.
University of Latvia
Abstract
First of its kind, the barrel section of the MIP Timing Detector is a large area timing detector based on LYSO:Ce crystals and SiPMs which are required to operate in an unprecedentedly harsh radiation environment (up to an integrated fluence of 2 x 10¹⁴ 1 MeV n_(eq)/cm²). It is designed as a key element of the upgrade of the existing CMS detector to provide a time resolution for minimum ionizing particles in the range between 30–60 ps throughout the entire operation at the High Luminosity LHC. A thorough optimization of its components has led to the final detector module layout which exploits 25 µm cell size SiPMs and 3.75 mm thick crystals. This design achieved the target performance in a series of test beam campaigns. In this paper we present test beam results which demonstrate the desired performance of detector modules in terms of radiation tolerance, time resolution and response uniformity.
Copyright and License
© 2025 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Acknowledgement
The authors are grateful to the technical experts of the CERN beam line facilities for their invaluable help.
Funding
This project has received funding from the European Union’s Horizon Europe Research and Innovation programme under Grant Agreement No. 101057511 (EURO-LABS), the European Union - Next Generation EU Mission 4 Component 2 CUP I53D23001520006, MoST (China) under the National Key R&D Program of China (No. 2022YFA1602100), the NSFC (China) under global scientific research funding projects (No. W2443006), the Fundação para a Ciência e a Tecnologia (FCT), Portugal and ICSC – National Research Center for High Performance Computing, Big Data and Quantum Computing funded by the NextGenerationEU program (Italy), Latvian Council of Sciences State research programme project VPP-IZM-CERN-2022/1-0001.
Conflict of Interest
Files
1-s2.0-S0168900225006254-main.pdf
Files
(2.1 MB)
Name | Size | Download all |
---|---|---|
md5:c8459df921972cc6e88c35101499d936
|
2.1 MB | Preview Download |
Additional details
Related works
- Is new version of
- Discussion Paper: arXiv:2504.11209 (arXiv)
Funding
- European Union
- EURO-LABS 101057511
- European Union
- Next Generation EU Mission 4 Component 2 CUP I53D23001520006
- Ministry of Science and Technology of the People's Republic of China
- National Key R&D Program 2022YFA1602100
- National Natural Science Foundation of China
- W2443006
- Fundação para a Ciência e Tecnologia
- National Center for High-Performance Computing
- Latvian Council of Science
- VPP-IZM-CERN-2022/1-0001
Dates
- Accepted
-
2025-07-01
- Available
-
2025-07-19Available online
- Available
-
2025-07-24Version of record