820 mV open-circuit voltages from Cu_(2)O/CH_(3)CN junctions
Abstract
P-Type cuprous oxide (Cu_(2)O) photoelectrodes prepared by the thermal oxidation of Cu foils exhibited open-circuit voltages in excess of 800 mV in nonaqueous regenerative photoelectrochemical cells. In contact with the decamethylcobaltocene^(+/0) (Me_(10)CoCp_(2)^(+/0)) redox couple, cuprous oxide yielded open-circuit voltage, V_(oc), values of 820 mV and short-circuit current density, J_(sc), values of 3.1 mA cm^(−2) under simulated air mass 1.5 illumination. The energy-conversion efficiency of 1.5% was limited by solution absorption and optical reflection losses that reduced the short-circuit photocurrent density. Spectral response measurements demonstrated that the internal quantum yield approached unity in the 400–500 nm spectral range, but poor red response, attributable to bulk recombination, lowered the overall efficiency of the cell. X-Ray photoelectron spectroscopy and Auger electron spectroscopy indicated that the photoelectrodes had a high-quality cuprous oxide surface, and revealed no observable photocorrosion during operation in the nonaqueous electrolyte. The semiconductor/liquid junctions thus provide a noninvasive method to investigate the energy-conversion properties of cuprous oxide without the confounding factors of deleterious surface reactions.
Additional Information
© 2011 Royal Society of Chemistry. Received 12th October 2010, Accepted 25th November 2010. This work was supported by the Office of Energy Efficiency and Renewable Energy, US Department of Energy under Grant DE-FG36-08GO18006, the Caltech Center for Sustainable Energy Research (CCSER), and the Dow Chemical Company. One of us (GMK) acknowledges support under an NDSEG graduate fellowship.Attached Files
Published - Xiang2011p13479Energ_Environ_Sci.pdf
Supplemental Material - c0ee00554a.pdf
Files
Name | Size | Download all |
---|---|---|
md5:53a9e76f4e3405a487608f3cc4cebcc0
|
381.9 kB | Preview Download |
md5:b694f7e35048cb6d937f3f8121c7492c
|
220.0 kB | Preview Download |
Additional details
- Eprint ID
- 23410
- Resolver ID
- CaltechAUTHORS:20110421-100446025
- Department of Energy (DOE)
- DE-FG36-08GO18006
- Caltech Center for Sustainable Energy Research
- Dow Chemical Company
- National Defense Science and Engineering Graduate (NDSEG) Fellowship
- Created
-
2011-04-21Created from EPrint's datestamp field
- Updated
-
2021-11-09Created from EPrint's last_modified field
- Caltech groups
- Kavli Nanoscience Institute