Suppressing excitation effects in microwave induced thermoacoustic tomography by multi-view Hilbert transformation
- Creators
- He, Yu
- Shen, Yuecheng
- Liu, Changjun
- Wang, Lihong V.
Abstract
Microwave induced thermoacoustic tomography (TAT) images usually suffer from distortions arising from the microwave polarization effect and standing wave effect. The microwave polarization effect, resulting from linearly polarized microwave illumination, splits the image of the object along the polarization direction, while the standing wave effect, when the object size is larger than the microwave wavelength within the object, modulates the image of the object. Both effects cause non-uniform energy distribution in a uniformly absorbing object and create artifacts in the reconstructed images. To address these problems in TAT, we propose an image reconstruction method that combines multi-view Hilbert transformation with the back-projection algorithm. We experimentally validate this method by imaging breast and brain tumor phantoms, showing that the aforementioned distortions are significantly suppressed. We anticipate that this method will contribute to clinical tumor diagnosis.
Additional Information
© 2017 Published by AIP Publishing. Received 15 December 2016; accepted 18 January 2017; published online 30 January 2017. This work was supported in part by the China 973 program 2013CB328902 and the China Scholarship Council.Attached Files
Published - 1.4975204.pdf
Files
Name | Size | Download all |
---|---|---|
md5:7ac347d6d731f140add0804fad0e38a6
|
1.6 MB | Preview Download |
Additional details
- Eprint ID
- 93271
- Resolver ID
- CaltechAUTHORS:20190226-135644616
- China 973 progam
- 2013CB328902
- China Scholarship Council
- Created
-
2019-02-26Created from EPrint's datestamp field
- Updated
-
2021-11-16Created from EPrint's last_modified field