Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published March 2016 | Supplemental Material + Published
Journal Article Open

Correlations and zoning patterns of phosphorus and chromium in olivine from H chondrites and the LL chondrite Semarkona

Abstract

Phosphorus zoning is observed in olivines in high-FeO (type IIA) chondrules in H chondrites over the entire range of petrologic grades: H3.1–H6. Features in P concentrations such as oscillatory and sector zoning, and high P cores are present in olivines that are otherwise unzoned in the divalent cations. Aluminum concentrations are low and not significantly associated with P zoning in chondrule olivines. In highly unequilibrated H chondrites, phosphorus zoning is generally positively correlated with Cr. Atomic Cr:P in olivine is roughly 1:1 (3:1 for one zone in one olivine in RC 075), consistent with Cr^(3+) charge-balancing P^(5+) substituting for Si^(4+). Normal igneous zonation involving the dominant chrome species Cr^(2+) was observed only in the LL3.0 chondrite Semarkona. In more equilibrated chondrites (H3.5–H3.8), Cr spatially correlated with P is occasionally observed but it is diffuse relative to the P zones. In H4–H6 chondrites, P-correlated Cr is absent. One signature of higher metamorphic grades (≥H3.8) is the presence of near matrix olivines that are devoid of P oscillatory zoning. The restriction to relatively high metamorphic grade and to grains near the chondrule–matrix interface suggests that this is a response to metasomatic processes. We also observed P-enriched halos near the chondrule–matrix interface in H3.3–H3.8 chondrites, likely reflecting the loss of P and Ca from mesostasis and precipitation of Ca phosphate near the chondrule surface. These halos are absent in equilibrated chondrites due to coarsening of the phosphate and in unequilibrated chondrites due to low degrees of metasomatism. Olivines in type IA chondrules show none of the P-zoning ubiquitous in type IIA chondrules or terrestrial igneous olivines, likely reflecting sequestration of P in reduced form within metallic alloys and sulfides during melting of type IA chondrules.

Additional Information

© 2016 The Meteoritical Society. Received 22 September 2014; revision accepted 16 November 2015. Article first published online: 18 Feb. 2016. The authors are grateful to Ma Chi for electron microprobe assistance. The reviews of J. S. Boesenberg, R. H. Jones, and S. C. Kohn were thorough and greatly appreciated. This work was supported by NASA grant NNX12AH63G.

Attached Files

Published - McCanta_et_al-2016-Meteoritics___Planetary_Science.pdf

Supplemental Material - maps12604-sup-0001-SupInfo.pdf

Files

McCanta_et_al-2016-Meteoritics___Planetary_Science.pdf
Files (3.2 MB)
Name Size Download all
md5:d39c7c1baf50d6202a12176b7d5360ff
3.2 MB Preview Download
md5:c91c9a931f8b7bf2c53f0407dc1bd7a2
48.1 kB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 17, 2023