Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published March 23, 2016 | Updated
Report Open

The Complexity of Nash Equilibria as Revealed by Data


In this paper we initiate the study of the computational complexity of Nash equilibria in bimatrix games that are specified via data. This direction is motivated by an attempt to connect the emerging work on the computational complexity of Nash equilibria with the perspective of revealed preference theory, where inputs are data about observed behavior, rather than explicit payoffs. Our results draw such connections for large classes of data sets, and provide a formal basis for studying these connections more generally. In particular, we derive three structural conditions that are sufficient to ensure that a data set is both consistent with Nash equilibria and that the observed equilibria could have been computed effciently: (i) small dimensionality of the observed strategies, (ii) small support size of the observed strategies, and (iii) small chromatic number of the data set. Key to these results is a connection between data sets and the player rank of a game, defined to be the minimum rank of the payoff matrices of the players. We complement our results by constructing data sets that require rationalizing games to have high player rank, which suggests that computational constraints may be important empirically as well.

Additional Information

ArXiv: Submitted on 12 Nov 2013 (v1), last revised 26 Sep 2014 (this version, v2)). This research was supported by NSF grants CNS-0846025, EPAS-1307794, and CCF-1101470, along with a Linde/SISL postdoctoral fellowship.

Attached Files

Updated - 1311.2655v2.pdf


Files (215.7 kB)
Name Size Download all
215.7 kB Preview Download

Additional details

August 20, 2023
October 18, 2023