Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published August 1998 | public
Journal Article

Edge-driven convection


We consider a series of simple calculations with a step-function change in thickness of the lithosphere and imposed, far-field boundary conditions to illustrate the influence of the lithosphere on mantle flow. We consider the effect of aspect ratio and far-field boundary conditions on the small-scale flow driven by a discontinuity in the thickness of the lithosphere. In an isothermal mantle, with no other outside influences, the basic small-scale flow aligns with the lithosphere such that there is a downwelling at the lithospheric discontinuity (edge-driven flow); however, the pattern of the small-scale flow is strongly dependent on the large-scale thermal structure of a much broader area of the upper mantle. Long-wavelength temperature anomalies in the upper mantle can overwhelm edge-driven flow on a short timescale; however, convective motions work to homogenize these anomalies on the order of 100 million years while cratonic roots can remain stable for longer time periods. A systematic study of the effect of the boundary conditions and aspect ratio of the domain shows that small-scale, and large-scale flows are driven by the lithosphere. Edge-driven flow produces velocities on the order of 20 mm/yr. This is comparable to calculations by others and we can expect an increase in this rate as the mantle viscosity is decreased.

Additional Information

© 1998 Elsevier Science B.V. Received 15 January 1998; revised version received 21 April 1998; accepted 28 April 1998.

Additional details

August 22, 2023
October 19, 2023