Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published March 16, 2023 | Accepted Version
Report Open

Chasing Convex Bodies and Functions with Black-Box Advice

Abstract

We consider the problem of convex function chasing with black-box advice, where an online decision-maker aims to minimize the total cost of making and switching between decisions in a normed vector space, aided by black-box advice such as the decisions of a machine-learned algorithm. The decision-maker seeks cost comparable to the advice when it performs well, known as consistency, while also ensuring worst-case robustness even when the advice is adversarial. We first consider the common paradigm of algorithms that switch between the decisions of the advice and a competitive algorithm, showing that no algorithm in this class can improve upon 3-consistency while staying robust. We then propose two novel algorithms that bypass this limitation by exploiting the problem's convexity. The first, INTERP, achieves (√2̅ + ϵ)-consistency and 2̅(C/ϵ²)-robustness for any ϵ > 0, where C is the competitive ratio of an algorithm for convex function chasing or a subclass thereof. The second, BDINTERP, achieves (1 + ϵ)-consistency and O(CD/ϵ)-robustness when the problem has bounded diameter D. Further, we show that BDINTERP achieves near-optimal consistency-robustness trade-off for the special case where cost functions are α-polyhedral.

Additional Information

© 2022 N. Christianson, T. Handina & A. Wierman. Attribution 4.0 International (CC BY 4.0) The authors thank Eitan Levin for several helpful discussions. The authors acknowledge support from an NSF Graduate Research Fellowship (DGE-1745301), NSF grants CNS-2146814, CPS-2136197, CNS-2106403, and NGSDI-2105648, and Amazon AWS.

Attached Files

Accepted Version - 2206.11780.pdf

Files

2206.11780.pdf
Files (672.3 kB)
Name Size Download all
md5:80d013503d779a2611e32b63d0ccc3bb
672.3 kB Preview Download

Additional details

Created:
August 20, 2023
Modified:
October 25, 2023