Point Absorber Limits to Future Gravitational-Wave Detectors
- Creators
- Jia, Wenxuan
- Yamamoto, Hiroaki
- Kuns, Kevin
- Effler, Anamaria
- Evans, Matthew
- Fritschel, Peter
- Abbott, R.
- Adams, C.
- Adhikari, R. X.
- Ananyeva, A.
- Appert, S.
- Arai, K.
- Areeda, J. S.
- Asali, Y.
- Aston, S. M.
- Austin, C.
- Baer, A. M.
- Ball, M.
- Ballmer, S. W.
- Banagiri, S.
- Barker, D.
- Barsotti, L.
- Bartlett, J.
- Berger, B. K.
- Betzwieser, J.
- Bhattacharjee, D.
- Billingsley, G.
- Biscans, S.
- Blair, C. D.
- Blair, R. M.
- Bode, N.
- Booker, P.
- Bork, R.
- Bramley, A.
- Brooks, A. F.
- Brown, D. D.
- Buikema, A.
- Cahillane, C.
- Cannon, K. C.
- Chen, X.
- Ciobanu, A. A.
- Clara, F.
- Compton, C. M.
- Cooper, S. J.
- Corley, K. R.
- Countryman, S. T.
- Covas, P. B.
- Coyne, D. C.
- Datrier, L. E. H.
- Davis, D.
- Di Fronzo, C.
- Dooley, K. L.
- Driggers, J. C.
- Dupej, P.
- Dwyer, S. E.
- Etzel, T.
- Evans, T. M.
- Feicht, J.
- Fernandez-Galiana, A.
- Frolov, V. V.
- Fulda, P.
- Fyffe, M.
- Giaime, J. A.
- Giardina, K. D.
- Godwin, P.
- Goetz, E.
- Gras, S.
- Gray, C.
- Gray, R.
- Green, A. C.
- Gustafson, E. K.
- Gustafson, R.
- Hall, E. D.
- Hanks, J.
- Hanson, J.
- Hardwick, T.
- Hasskew, R. K.
- Heintze, M. C.
- Helmling-Cornell, A. F.
- Holland, N. A.
- Jones, J. D.
- Kandhasamy, S.
- Karki, S.
- Kasprzack, M.
- Kawabe, K.
- Kijbunchoo, N.
- King, P. J.
- Kissel, J. S.
- Kumar, Rahul
- Landry, M.
- Lane, B. B.
- Lantz, B.
- Laxen, M.
- Lecoeuche, Y. K.
- Leviton, J.
- Liu, J.
- Lormand, M.
- Lundgren, A. P.
- Macas, R.
- MacInnis, M.
- Macleod, D. M.
- Mansell, G. L.
- Márka, S.
- Márka, Z.
- Martynov, D. V.
- Mason, K.
- Massinger, T. J.
- Matichard, F.
- Mavalvala, N.
- McCarthy, R.
- McClelland, D. E.
- McCormick, S.
- McCuller, L.
- McIver, J.
- McRae, T.
- Mendell, G.
- Merfeld, K.
- Merilh, E. L.
- Meylahn, F.
- Mistry, T.
- Mittleman, R.
- Moreno, G.
- Mow-Lowry, C. M.
- Mozzon, S.
- Mullavey, A.
- Nelson, T. J. N.
- Nguyen, P.
- Nuttall, L. K.
- Oberling, J.
- Oram, Richard J.
- Osthelder, C.
- Ottaway, D. J.
- Overmier, H.
- Palamos, J. R.
- Parker, W.
- Payne, E.
- Pele, A.
- Penhorwood, R.
- Perez, C. J.
- Pirello, M.
- Radkins, H.
- Ramirez, K. E.
- Richardson, J. W.
- Riles, K.
- Robertson, N. A.
- Rollins, J. G.
- Romel, C. L.
- Romie, J. H.
- Ross, M. P.
- Ryan, K.
- Sadecki, T.
- Sanchez, E. J.
- Sanchez, L. E.
- Saravanan, T. R.
- Savage, R. L.
- Schaetzl, D.
- Schnabel, R.
- Schofield, R. M. S.
- Schwartz, E.
- Sellers, D.
- Shaffer, T.
- Sigg, D.
- Slagmolen, B. J. J.
- Smith, J. R.
- Soni, S.
- Sorazu, B.
- Spencer, A. P.
- Strain, K. A.
- Sun, L.
- Szczepańczyk, M. J.
- Thomas, M.
- Thomas, P.
- Thorne, K. A.
- Toland, K.
- Torrie, C. I.
- Traylor, G.
- Tse, M.
- Urban, A. L.
- Vajente, G.
- Valdes, G.
- Vander-Hyde, D. C.
- Veitch, P. J.
- Venkateswara, K.
- Venugopalan, G.
- Viets, A. D.
- Vo, T.
- Vorvick, C.
- Wade, M.
- Ward, R. L.
- Warner, J.
- Weaver, B.
- Weiss, R.
- Whittle, C.
- Willke, B.
- Wipf, C. C.
- Xiao, L.
- Yu, Hang
- Yu, Haocun
- Zhang, L.
- Zucker, M. E.
- Zweizig, J.
Abstract
High-quality optical resonant cavities require low optical loss, typically on the scale of parts per million. However, unintended micron-scale contaminants on the resonator mirrors that absorb the light circulating in the cavity can deform the surface thermoelastically and thus increase losses by scattering light out of the resonant mode. The point absorber effect is a limiting factor in some high-power cavity experiments, for example, the Advanced LIGO gravitational-wave detector. In this Letter, we present a general approach to the point absorber effect from first principles and simulate its contribution to the increased scattering. The achievable circulating power in current and future gravitational-wave detectors is calculated statistically given different point absorber configurations. Our formulation is further confirmed experimentally in comparison with the scattered power in the arm cavity of Advanced LIGO measured by in situ photodiodes. The understanding presented here provides an important tool in the global effort to design future gravitational-wave detectors that support high optical power and thus reduce quantum noise.
Additional Information
© 2021 American Physical Society. Received 22 September 2021; accepted 27 October 2021; published 7 December 2021. The author acknowledges the support of MathWorks Science Fellowship and Sloan Foundation, and thanks The MathWorks, Inc. for its generous computing support. Advanced LIGO was constructed by the California Institute of Technology and Massachusetts Institute of Technology with funding from the NSF and operates under Cooperative Agreement No. PHY-1764464. Advanced LIGO was built under Grant No. PHY-0823459.Attached Files
Published - PhysRevLett.127.241102.pdf
Accepted Version - 2109.08743.pdf
Supplemental Material - point_absorber_sup.pdf
Files
Additional details
- Eprint ID
- 112607
- Resolver ID
- CaltechAUTHORS:20211221-760371100
- MathWorks, Inc.
- Alfred P. Sloan Foundation
- PHY-1764464
- NSF
- PHY-0823459
- NSF
- Created
-
2021-12-21Created from EPrint's datestamp field
- Updated
-
2021-12-21Created from EPrint's last_modified field
- Caltech groups
- LIGO