Published December 10, 2021 | Accepted Version + Supplemental Material + Published
Journal Article Open

Point Absorber Limits to Future Gravitational-Wave Detectors

Jia, Wenxuan ORCID icon
Yamamoto, Hiroaki ORCID icon
Kuns, Kevin ORCID icon
Effler, Anamaria ORCID icon
Evans, Matthew ORCID icon
Fritschel, Peter
Abbott, R.
Adams, C.
Adhikari, R. X. ORCID icon
Ananyeva, A.
Appert, S.
Arai, K. ORCID icon
Areeda, J. S.
Asali, Y.
Aston, S. M.
Austin, C. ORCID icon
Baer, A. M.
Ball, M.
Ballmer, S. W.
Banagiri, S.
Barker, D.
Barsotti, L. ORCID icon
Bartlett, J.
Berger, B. K.
Betzwieser, J. ORCID icon
Bhattacharjee, D. ORCID icon
Billingsley, G. ORCID icon
Biscans, S. ORCID icon
Blair, C. D. ORCID icon
Blair, R. M.
Bode, N. ORCID icon
Booker, P.
Bork, R.
Bramley, A.
Brooks, A. F. ORCID icon
Brown, D. D.
Buikema, A. ORCID icon
Cahillane, C. ORCID icon
Cannon, K. C.
Chen, X.
Ciobanu, A. A.
Clara, F.
Compton, C. M.
Cooper, S. J.
Corley, K. R.
Countryman, S. T.
Covas, P. B.
Coyne, D. C. ORCID icon
Datrier, L. E. H.
Davis, D. ORCID icon
Di Fronzo, C.
Dooley, K. L.
Driggers, J. C.
Dupej, P.
Dwyer, S. E.
Etzel, T.
Evans, T. M.
Feicht, J. ORCID icon
Fernandez-Galiana, A. ORCID icon
Frolov, V. V.
Fulda, P. ORCID icon
Fyffe, M.
Giaime, J. A.
Giardina, K. D.
Godwin, P.
Goetz, E. ORCID icon
Gras, S.
Gray, C.
Gray, R.
Green, A. C.
Gustafson, E. K.
Gustafson, R.
Hall, E. D.
Hanks, J.
Hanson, J.
Hardwick, T.
Hasskew, R. K.
Heintze, M. C.
Helmling-Cornell, A. F.
Holland, N. A.
Jones, J. D.
Kandhasamy, S. ORCID icon
Karki, S.
Kasprzack, M. ORCID icon
Kawabe, K. ORCID icon
Kijbunchoo, N. ORCID icon
King, P. J.
Kissel, J. S. ORCID icon
Kumar, Rahul
Landry, M.
Lane, B. B.
Lantz, B. ORCID icon
Laxen, M. ORCID icon
Lecoeuche, Y. K.
Leviton, J.
Liu, J.
Lormand, M.
Lundgren, A. P.
Macas, R.
MacInnis, M. ORCID icon
Macleod, D. M.
Mansell, G. L.
Márka, S. ORCID icon
Márka, Z.
Martynov, D. V.
Mason, K.
Massinger, T. J.
Matichard, F. ORCID icon
Mavalvala, N.
McCarthy, R.
McClelland, D. E.
McCormick, S.
McCuller, L. ORCID icon
McIver, J. ORCID icon
McRae, T.
Mendell, G.
Merfeld, K.
Merilh, E. L.
Meylahn, F. ORCID icon
Mistry, T.
Mittleman, R.
Moreno, G.
Mow-Lowry, C. M.
Mozzon, S. ORCID icon
Mullavey, A. ORCID icon
Nelson, T. J. N.
Nguyen, P. ORCID icon
Nuttall, L. K.
Oberling, J.
Oram, Richard J.
Osthelder, C.
Ottaway, D. J.
Overmier, H.
Palamos, J. R.
Parker, W. ORCID icon
Payne, E.
Pele, A. ORCID icon
Penhorwood, R.
Perez, C. J.
Pirello, M. ORCID icon
Radkins, H.
Ramirez, K. E.
Richardson, J. W. ORCID icon
Riles, K. ORCID icon
Robertson, N. A.
Rollins, J. G. ORCID icon
Romel, C. L.
Romie, J. H.
Ross, M. P.
Ryan, K.
Sadecki, T.
Sanchez, E. J.
Sanchez, L. E. ORCID icon
Saravanan, T. R.
Savage, R. L.
Schaetzl, D.
Schnabel, R. ORCID icon
Schofield, R. M. S.
Schwartz, E. ORCID icon
Sellers, D.
Shaffer, T.
Sigg, D. ORCID icon
Slagmolen, B. J. J.
Smith, J. R.
Soni, S. ORCID icon
Sorazu, B. ORCID icon
Spencer, A. P.
Strain, K. A.
Sun, L. ORCID icon
Szczepańczyk, M. J. ORCID icon
Thomas, M.
Thomas, P.
Thorne, K. A.
Toland, K.
Torrie, C. I.
Traylor, G.
Tse, M. ORCID icon
Urban, A. L.
Vajente, G. ORCID icon
Valdes, G.
Vander-Hyde, D. C.
Veitch, P. J.
Venkateswara, K.
Venugopalan, G. ORCID icon
Viets, A. D.
Vo, T.
Vorvick, C. ORCID icon
Wade, M. ORCID icon
Ward, R. L.
Warner, J.
Weaver, B. ORCID icon
Weiss, R.
Whittle, C. ORCID icon
Willke, B. ORCID icon
Wipf, C. C.
Xiao, L. ORCID icon
Yu, Hang ORCID icon
Yu, Haocun ORCID icon
Zhang, L. ORCID icon
Zucker, M. E. ORCID icon
Zweizig, J. ORCID icon

Abstract

High-quality optical resonant cavities require low optical loss, typically on the scale of parts per million. However, unintended micron-scale contaminants on the resonator mirrors that absorb the light circulating in the cavity can deform the surface thermoelastically and thus increase losses by scattering light out of the resonant mode. The point absorber effect is a limiting factor in some high-power cavity experiments, for example, the Advanced LIGO gravitational-wave detector. In this Letter, we present a general approach to the point absorber effect from first principles and simulate its contribution to the increased scattering. The achievable circulating power in current and future gravitational-wave detectors is calculated statistically given different point absorber configurations. Our formulation is further confirmed experimentally in comparison with the scattered power in the arm cavity of Advanced LIGO measured by in situ photodiodes. The understanding presented here provides an important tool in the global effort to design future gravitational-wave detectors that support high optical power and thus reduce quantum noise.

Additional Information

© 2021 American Physical Society. Received 22 September 2021; accepted 27 October 2021; published 7 December 2021. The author acknowledges the support of MathWorks Science Fellowship and Sloan Foundation, and thanks The MathWorks, Inc. for its generous computing support. Advanced LIGO was constructed by the California Institute of Technology and Massachusetts Institute of Technology with funding from the NSF and operates under Cooperative Agreement No. PHY-1764464. Advanced LIGO was built under Grant No. PHY-0823459.

Attached Files

Published - PhysRevLett.127.241102.pdf

Accepted Version - 2109.08743.pdf

Supplemental Material - point_absorber_sup.pdf

Files

PhysRevLett.127.241102.pdf
Files (1.8 MB)
Name Size Download all
md5:96d2038c23b4f05fc637e0cf7da6d371
711.1 kB Preview Download
md5:96c577cd9ca105faf1d226dc90a60a35
850.5 kB Preview Download
md5:3114b1f4ac70c93c7e2e12d708129a0e
209.8 kB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 23, 2023