CaltechAUTHORS is in read-only mode. No changes or additions are possible.
Published May 14, 2025 | Published
Journal Article Open

Structured ionized winds shooting out from a quasar at relativistic speeds

XRISM collaboration
Audard, Marc1, 2 ORCID icon
Awaki, Hisamitsu1, 3
Ballhausen, Ralf1, 4, 5
Bamba, Aya1, 6 ORCID icon
Behar, Ehud1, 7 ORCID icon
Boissay-Malaquin, Rozenn1, 5, 8 ORCID icon
Brenneman, Laura1, 9
Brown, Gregory V.1, 10
Corrales, Lia1, 11
Costantini, Elisa1, 12 ORCID icon
Cumbee, Renata1, 5 ORCID icon
Trigo, María Díaz1, 13 ORCID icon
Done, Chris1, 14, 6 ORCID icon
Dotani, Tadayasu1, 15
Ebisawa, Ken1, 15
Eckart, Megan1, 10 ORCID icon
Eckert, Dominique1, 2
Enoto, Teruaki1, 16
Eguchi, Satoshi1, 17 ORCID icon
Ezoe, Yuichiro1, 18
Foster, Adam1, 9
Fujimoto, Ryuichi1, 15 ORCID icon
Fujita, Yutaka1, 18 ORCID icon
Fukazawa, Yasushi1, 19
Fukushima, Kotaro1, 15 ORCID icon
Furuzawa, Akihiro1, 20
Gallo, Luigi1, 21
García, Javier A.1, 5, 22
Gu, Liyi1, 12
Guainazzi, Matteo1, 23
Hagino, Kouichi1, 6 ORCID icon
Hamaguchi, Kenji1, 5, 8 ORCID icon
Hatsukade, Isamu1, 24
Hayashi, Katsuhiro1, 15
Hayashi, Takayuki1, 5, 8 ORCID icon
Hell, Natalie1, 10 ORCID icon
Hodges-Kluck, Edmund1, 5
Hornschemeier, Ann1, 5
Ichinohe, Yuto1, 25 ORCID icon
Ishida, Manabu1, 15
Ishikawa, Kumi1, 18
Ishisaki, Yoshitaka1, 18
Kaastra, Jelle1, 12, 26 ORCID icon
Kallman, Timothy1, 5
Kara, Erin1, 7 ORCID icon
Katsuda, Satoru1, 27
Kanemaru, Yoshiaki1, 15 ORCID icon
Kelley, Richard1, 5
Kilbourne, Caroline1, 5
Kitamoto, Shunji1, 28
Kobayashi, Shogo1, 29
Kohmura, Takayoshi1, 29 ORCID icon
Kubota, Aya1, 30
Leutenegger, Maurice1, 5 ORCID icon
Loewenstein, Michael1, 4, 5 ORCID icon
Maeda, Yoshitomo1, 15
Markevitch, Maxim1, 5
Matsumoto, Hironori1, 31
Matsushita, Kyoko1, 29
McCammon, Dan1, 32 ORCID icon
McNamara, Brian1, 33
Mernier, François1, 4, 5
Miller, Eric D.1, 7 ORCID icon
Miller, Jon M.1, 11 ORCID icon
Mitsuishi, Ikuyuki1, 34 ORCID icon
Mizumoto, Misaki1, 35 ORCID icon
Mizuno, Tsunefumi1, 19 ORCID icon
Mori, Koji1, 24 ORCID icon
Mukai, Koji1, 5, 8 ORCID icon
Murakami, Hiroshi1, 36
Mushotzky, Richard1, 4 ORCID icon
Nakajima, Hiroshi1, 37
Nakazawa, Kazuhiro1, 34
Ness, Jan-Uwe1, 38
Nobukawa, Kumiko1, 39
Nobukawa, Masayoshi1, 40
Noda, Hirofumi1, 41
Odaka, Hirokazu1, 31
Ogawa, Shoji1, 15
Ogorzalek, Anna1, 4, 5
Okajima, Takashi1, 5 ORCID icon
Ota, Naomi1, 42 ORCID icon
Paltani, Stephane1, 2
Petre, Robert1, 5
Plucinsky, Paul1, 9
Porter, Frederick Scott1, 5 ORCID icon
Pottschmidt, Katja1, 5, 8 ORCID icon
Sato, Kosuke1, 27, 43 ORCID icon
Sato, Toshiki1, 44
Sawada, Makoto1, 28
Seta, Hiromi1, 18
Shidatsu, Megumi1, 3 ORCID icon
Simionescu, Aurora1, 12 ORCID icon
Smith, Randall1, 9 ORCID icon
Suzuki, Hiromasa1, 15
Szymkowiak, Andrew1, 45
Takahashi, Hiromitsu1, 19 ORCID icon
Takeo, Mai1, 27
Tamagawa, Toru1, 25 ORCID icon
Tamura, Keisuke1, 5, 8 ORCID icon
Tanaka, Takaaki1, 46 ORCID icon
Tanimoto, Atsushi1, 47
Tashiro, Makoto1, 15, 27 ORCID icon
Terada, Yukikatsu1, 15, 27 ORCID icon
Terashima, Yuichi1, 3
Tsuboi, Yohko1, 48
Tsujimoto, Masahiro1, 15
Tsunemi, Hiroshi1, 31
Tsuru, Takeshi G.1, 16 ORCID icon
Uchida, Hiroyuki1, 16
Uchida, Nagomi1, 15
Uchida, Yuusuke1, 29 ORCID icon
Uchiyama, Hideki1, 49 ORCID icon
Ueda, Yoshihiro1, 16
Uno, Shinichiro1, 50
Vink, Jacco1, 51 ORCID icon
Watanabe, Shin1, 15 ORCID icon
Williams, Brian J.1, 5 ORCID icon
Yamada, Satoshi1, 41
Yamada, Shinya1, 28 ORCID icon
Yamaguchi, Hiroya1, 15
Yamaoka, Kazutaka1, 34
Yamasaki, Noriko1, 15 ORCID icon
Yamauchi, Makoto1, 24 ORCID icon
Yamauchi, Shigeo1, 42
Yaqoob, Tahir1, 5, 8
Yoneyama, Tomokage1, 48
Yoshida, Tessei1, 15
Yukita, Mihoko1, 5, 52
Zhuravleva, Irina1, 53 ORCID icon
Braito, Valentina1, 54, 55, 56
Condò, Pierpaolo1, 57 ORCID icon
Fukumura, Keigo1, 58 ORCID icon
Gonzalez, Adam1, 21 ORCID icon
Luminari, Alfredo1, 59, 60
Miyamoto, Aiko1, 31
Mizukawa, Ryuki1, 27
Reeves, James1, 54, 55 ORCID icon
Sato, Riki1, 6 ORCID icon
Tombesi, Francesco1, 57 ORCID icon
Xu, Yerong1, 21
  • 1. ROR icon Technion – Israel Institute of Technology
  • 2. ROR icon University of Geneva
  • 3. ROR icon Ehime University
  • 4. ROR icon University of Maryland, College Park
  • 5. ROR icon Goddard Space Flight Center
  • 6. ROR icon University of Tokyo
  • 7. ROR icon Massachusetts Institute of Technology
  • 8. ROR icon University of Maryland, Baltimore
  • 9. ROR icon Harvard-Smithsonian Center for Astrophysics
  • 10. ROR icon Lawrence Livermore National Laboratory
  • 11. ROR icon University of Michigan–Ann Arbor
  • 12. ROR icon Netherlands Institute for Space Research
  • 13. ROR icon European Southern Observatory
  • 14. ROR icon Durham University
  • 15. ROR icon Institute of Space and Astronautical Science
  • 16. ROR icon Kyoto University
  • 17. ROR icon Kumamoto Gakuen University
  • 18. ROR icon Tokyo Metropolitan University
  • 19. ROR icon Hiroshima University
  • 20. ROR icon Fujita Health University
  • 21. ROR icon Saint Mary's University
  • 22. ROR icon California Institute of Technology
  • 23. ROR icon European Space Research and Technology Centre
  • 24. ROR icon University of Miyazaki
  • 25. ROR icon RIKEN Nishina Center
  • 26. ROR icon Leiden University
  • 27. ROR icon Saitama University
  • 28. ROR icon Rikkyo University
  • 29. ROR icon Tokyo University of Science
  • 30. ROR icon Shibaura Institute of Technology
  • 31. ROR icon Osaka University
  • 32. ROR icon University of Wisconsin–Madison
  • 33. ROR icon University of Waterloo
  • 34. ROR icon Nagoya University
  • 35. ROR icon University of Teacher Education Fukuoka
  • 36. ROR icon Tohoku Gakuin University
  • 37. ROR icon Kanto Gakuin University
  • 38. ROR icon European Space Astronomy Centre
  • 39. ROR icon Kindai University
  • 40. ROR icon Nara University of Education
  • 41. ROR icon Tohoku University
  • 42. ROR icon Nara Women's University
  • 43. ROR icon Kyoto Sangyo University
  • 44. ROR icon Meiji University
  • 45. ROR icon Yale University
  • 46. ROR icon Konan University
  • 47. ROR icon Kagoshima University
  • 48. ROR icon Chuo University
  • 49. ROR icon Shizuoka University
  • 50. ROR icon Nihon Fukushi University
  • 51. ROR icon University of Amsterdam
  • 52. ROR icon Johns Hopkins University
  • 53. ROR icon University of Chicago
  • 54. ROR icon Brera Astronomical Observatory
  • 55. ROR icon Catholic University of America
  • 56. ROR icon University of Trento
  • 57. ROR icon University of Rome Tor Vergata
  • 58. ROR icon James Madison University
  • 59. ROR icon Institute for Space Astrophysics and Planetology
  • 60. ROR icon Astronomical Observatory of Rome

Abstract

Evidence indicates that supermassive black holes (SMBHs) exist at the centres of most galaxies. Their mass correlates with the galactic bulge mass1, suggesting a coevolution with their host galaxies2, most likely through powerful winds3. X-ray observations have detected highly ionized winds outflowing at sub-relativistic speeds from the accretion disks around SMBHs4,5. However, the limited spectral resolution of present X-ray instruments has left the physical structure and location of the winds poorly understood, hindering accurate estimates of their kinetic power6,7. Here the first X-Ray Imaging and Spectroscopy Mission (XRISM) observation of the luminous quasar PDS 456 is reported. The high-resolution spectrometer Resolve aboard XRISM enabled the discovery of five discrete velocity components outflowing at 20–30% of the speed of light. This demonstrates that the wind structure is highly inhomogeneous, which probably consists of up to a million clumps. The mass outflow rate is estimated to be 60–300 solar masses per year, with the wind kinetic power exceeding the Eddington luminosity limit. Compared with the galaxy-scale outflows, the kinetic power is more than three orders of magnitude larger, whereas the momentum flux is ten times larger. These estimates disfavour both energy-driven and momentum-driven outflow models. This suggests that such wind activity occurs in less than 10% of the quasar phase and/or that its energy/momentum is not efficiently transferred to the galaxy-scale outflows owing to the clumpiness of the wind and the interstellar medium.

Copyright and License

© 2025, The Author(s), under exclusive licence to Springer Nature Limited.

Acknowledgement

We thank J. Mao for fruitful discussions and comments and Y. Mochizuki for his technical advice on XSTAR table models. This work was supported by JSPS KAKENHI grant numbers JP22H00158, JP22H01268, JP22K03624, JP23H04899, JP21K13963, JP24K00638, JP24K17105, JP21K13958, JP21H01095, JP23K20850, JP24H00253, JP21K03615, JP24K00677, JP20K14491, JP23H00151, JP19K21884, JP20H01947, JP20KK0071, JP23K20239, JP24K00672, JP24K17104, JP24K17093, JP20K04009, JP21H04493, JP20H01946, JP23K13154, JP19K14762 and JP20H05857, JP2 Examples of the convolved emission line p3K03459 and NASA grant numbers 80NSSC24K1148, 80NSSC24K1774, 80NSSC20K0733, 80NSSC18K0978, 80NSSC20K0883, 80NSSC20K0737, 80NSSC24K0678, 80NSSC18K1684 and 80NNSC22K1922. M. Mizumoto acknowledges support from Yamada Science Foundation. L.C. acknowledges support from NSF award 2205918. C.D. acknowledges support from STFC through grant ST/T000244/1 and a Leverhulme Trust International Fellowship. L. Gallo acknowledges financial support from Canadian Space Agency grant 18XARMSTMA. A.T. is supported in part by the Kagoshima University postdoctoral research programme (KU-DREAM). Satoshi Yamada acknowledges support by the RIKEN SPDR Program. I.Z. acknowledges partial support from the Alfred P. Sloan Foundation through the Sloan Research Fellowship. F.T. acknowledges funding from the European Union – Next Generation EU, PRIN/MUR 2022 (2022K9N5B4). J.R. acknowledges support from NASA XRISM grant 80NSSC23K0645. Part of this work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. The material is based on work supported by NASA under award number 80GSFC21M0002. This work has been partially supported by the ASI-INAF programme I/004/11/6. This work was supported by the JSPS Core-to-Core Program, JPJSCCA20220002. The material is based on work supported by the Strategic Research Center of Saitama University.

Data Availability

The observational data analysed during this study will be available at NASA’s High Energy Astrophysics Science Archive Research Center (HEASARC; https://heasarc.gsfc.nasa.gov/) in the summer of 2025.

Code Availability

The codes used for the data reduction are available from the HEASARC website (https://heasarc.gsfc.nasa.gov/docs/software/heasoft) and the ESA’s website (https://www.cosmos.esa.int/web/xmm-newton/sas). The spectral fitting tools are freely available online (https://heasarc.gsfc.nasa.gov/xanadu/xspec for XSPEC and https://www.sron.nl/astrophysics-spex for SPEX).

Supplemental Material

Supplementary Information

This file contains Supplementary Methods 1–4, Supplementary References, Supplementary Figs. 1–8 and Supplementary Tables 1–4.

Files

s41586-025-08968-2.pdf
Files (7.7 MB)
Name Size Download all
md5:08da8c6e5d9652828b8d8bcd999644c6
1.4 MB Preview Download
md5:8318bb7cde1bcc618867e37d302a8541
6.3 MB Preview Download

Additional details

Created:
May 19, 2025
Modified:
May 19, 2025