Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published January 2017 | public
Journal Article

Cryogenically cooled ultra low vibration silicon mirrors for gravitational wave observatories

Abstract

Interferometric gravitational wave observatories recently launched a new field of gravitational wave astronomy with the first detections of gravitational waves in 2015. The number and quality of these detections is limited in part by thermally induced vibrations in the mirrors, which show up as noise in these interferometers. One way to reduce this thermally induced noise is to use low temperature mirrors made of high purity single-crystalline silicon. However, these low temperatures must be achieved without increasing the mechanical vibration of the mirror surface or the vibration of any surface within close proximity to the mirrors. The vibration of either surface can impose a noise inducing phase shift on the light within the interferometer or physically push the mirror through oscillating radiation pressure. This paper proposes a system for the Laser Interferometric Gravitational-wave Observatory (LIGO) to achieve the dual goals of low temperature and low vibration to reduce the thermally induced noise in silicon mirrors. Experimental results are obtained at Stanford University to prove that these dual goals can be realized simultaneously.

Additional Information

© 2016 Elsevier Ltd. Received 29 October 2016, Revised 7 December 2016, Accepted 9 December 2016, Available online 18 December 2016.

Additional details

Created:
August 22, 2023
Modified:
October 25, 2023