Polarized x-rays constrain the disk-jet geometry in the black hole x-ray binary Cygnus X-1
- Creators
- Krawczynski, Henric1
- Muleri, Fabio2
- Dovčiak, Michal3
- Veledina, Alexandra4, 5, 6
- Rodriguez Cavero, Nicole1
- Svoboda, Jiri3
- Ingram, Adam7
- Matt, Giorgio8
- Garcia, Javier A.9
- Loktev, Vladislav4
- Negro, Michela10, 11
- Poutanen, Juri4, 6
- Kitaguchi, Takao12
- Podgorný, Jakub3, 13, 14
- Rankin, John2
- Zhang, Wenda15
- Berdyugin, Andrei4
- Berdyugina, Svetlana V.16, 17
- Bianchi, Stefano8
- Blinov, Dmitry18
- Capitanio, Fiamma2
- Di Lalla, Niccolò19
- Draghis, Paul20
- Fabiani, Sergio2
- Kagitani, Masato21
- Kravtsov, Vadim4
- Kiehlmann, Sebastian18
- Latronico, Luca22
- Lutovinov, Alexander A.6
- Mandarakas, Nikos18
- Marin, Frédéric13
- Marinucci, Andrea23
- Miller, Jon M.20
- Mizuno, Tsunefumi24
- Molkov, Sergey V.6
- Omodei, Nicola19
- Petrucci, Pierre-Olivier25
- Ratheesh, Ajay2
- Sakanoi, Takeshi21
- Semena, Andrei N.6
- Skalidis, Raphael18
- Soffitta, Paolo2
- Tennant, Allyn F.26
- Thalhammer, Phillipp27
- Tombesi, Francesco28, 29, 30
- Weisskopf, Martin C.26
- Wilms, Joern27
- Zhang, Sixuan24
- Agudo, Iván31
- Antonelli, Lucio A.32, 33
- Bachetti, Matteo34
- Baldini, Luca35, 36
- Baumgartner, Wayne H.26
- Bellazzini, Ronaldo35
- Bongiorno, Stephen D.26
- Bonino, Raffaella22, 37
- Brez, Alessandro35
- Bucciantini, Niccolò38, 39, 40
- Castellano, Simone35
- Cavazzuti, Elisabetta23
- Ciprini, Stefano29, 33
- Costa, Enrico2
- De Rosa, Alessandra2
- Del Monte, Ettore2
- Di Gesu, Laura23
- Di Marco, Alessandro2
- Donnarumma, Immacolata23
- Doroshenko, Victor6, 41
- Ehlert, Steven R.26
- Enoto, Teruaki12
- Evangelista, Yuri2
- Ferrazzoli, Riccardo2
- Gunji, Shuichi42
- Hayashida, Kiyoshi43
- Heyl, Jeremy44
- Iwakiri, Wataru45
- Jorstad, Svetlana G.46, 47
- Karas, Vladimir3
- Kolodziejczak, Jeffery J.26
- La Monaca, Fabio2
- Liodakis, Ioannis4
- Maldera, Simone22
- Manfreda, Alberto35
- Marscher, Alan P.46
- Marshall, Herman L.48
- Mitsuishi, Ikuyuki49
- Ng, Chi-Yung50
- O'Dell, Stephen L.26
- Oppedisano, Chiara22
- Papitto, Alessandro32
- Pavlov, George G.51
- Peirson, Abel L.19
- Perri, Matteo32, 33
- Pesce-Rollins, Melissa35
- Pilia, Maura34
- Possenti, Andrea34
- Puccetti, Simonetta33
- Ramsey, Brian D.26
- Romani, Roger W.19
- Sgrò, Carmelo35
- Slane, Patrick52
- Spandre, Gloria35
- Tamagawa, Toru14
- Tavecchio, Fabrizio53
- Taverna, Roberto54
- Tawara, Yuzuru49
- Thomas, Nicholas E.26
- Trois, Alessio34
- Tsygankov, Sergey4, 6
- Turolla, Roberto54, 55
- Vink, Jacco56
- Wu, Kinwah55
- Xie, Fei2, 57
- Zane, Silvia55
- 1. Washington University in St. Louis
- 2. Institute for Space Astrophysics and Planetology
- 3. Astronomical Institute
- 4. University of Turku
- 5. Stockholm University
- 6. Space Research Institute
- 7. Newcastle University
- 8. Roma Tre University
- 9. California Institute of Technology
- 10. University of Maryland, Baltimore
- 11. Goddard Space Flight Center
- 12. RIKEN
- 13. Observatory of Strasbourg
- 14. Charles University
- 15. National Astronomical Observatories
- 16. Kiepenheuer Institut für Sonnenphysik
- 17. Universita della Svizzera Italiana
- 18. University of Crete
- 19. Stanford University
- 20. University of Michigan–Ann Arbor
- 21. Tohoku University
- 22. INFN Sezione di Torino
- 23. Agenzia Spaziale Italiana
- 24. Hiroshima University
- 25. Délégation Alpes
- 26. Marshall Space Flight Center
- 27. University of Erlangen-Nuremberg
- 28. University of Rome Tor Vergata
- 29. INFN Sezione di Roma I
- 30. University of Maryland, College Park
- 31. Instituto de Astrofísica de Andalucía
- 32. Astronomical Observatory of Rome
- 33. Space Science Data Center, ASI, 00133 Roma, Italy.
- 34. Osservatorio Astronomico di Cagliari
- 35. INFN Sezione di Pisa
- 36. University of Pisa
- 37. University of Turin
- 38. Arcetri Astrophysical Observatory
- 39. University of Florence
- 40. INFN Sezione di Firenze
- 41. University of Tübingen
- 42. Yamagata University
- 43. Osaka University
- 44. University of British Columbia
- 45. Chuo University
- 46. Boston University
- 47. St Petersburg University
- 48. Massachusetts Institute of Technology
- 49. Nagoya University
- 50. University of Hong Kong
- 51. Pennsylvania State University
- 52. Harvard-Smithsonian Center for Astrophysics
- 53. Brera Astronomical Observatory
- 54. University of Padua
- 55. University College London
- 56. University of Amsterdam
- 57. Guangxi University
Abstract
A black hole x-ray binary (XRB) system forms when gas is stripped from a normal star and accretes onto a black hole, which heats the gas sufficiently to emit x-rays. We report a polarimetric observation of the XRB Cygnus X-1 using the Imaging X-ray Polarimetry Explorer. The electric field position angle aligns with the outflowing jet, indicating that the jet is launched from the inner x-ray–emitting region. The polarization degree is 4.01 ± 0.20% at 2 to 8 kiloelectronvolts, implying that the accretion disk is viewed closer to edge-on than the binary orbit. These observations reveal that hot x-ray–emitting plasma is spatially extended in a plane perpendicular to, not parallel to, the jet axis.
Copyright and License
Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Acknowledgement
We thank J. Miller-Jones, J. Orosz, and A. Zdziarski for very helpful discussions of the optical constraints on the orbital inclination of Cyg X-1 and optical position angles. We are grateful to three anonymous referees, whose excellent comments contributed to strengthening the paper. We thank T. Maccarone for emphasizing that stellar wind absorption may modify the jet orientation measurement results. This work is based on observations made with the IXPE mission, a joint US and Italian mission. The US contribution to the IXPE mission is supported by NASA and led and managed by its Marshall Space Flight Center, with industry partner Ball Aerospace (contract NNM15AA18C). The Italian contribution to the IXPE mission is supported by the Italian Space Agency (ASI) through contract ASI-OHBI-2017-12-I.0, agreements ASI-INAF-2017-12-H0 and ASI-INFN-2017.13-H0, and its Space Science Data Center (SSDC) with agreements ASI-INAF-2022-14-HH.0 and ASI-INFN 2021-43-HH.0; and by INAF and the Istituto Nazionale di Fisica Nucleare (INFN) in Italy. This research used data and software products or online services provided by the IXPE Team (Marshall Space Flight Center, the SSDC of the Italian Space Agency, the INAF, and INFN), as well as the High-Energy Astrophysics Science Archive Research Center (HEASARC), at NASA Goddard Space Flight Center. We thank the NICER, NuSTAR, INTEGRAL, Swift, and SRG/ART-XC teams and Science Operation Centers for their support of this observation campaign. DIPol-2 is a joint effort between University of Turku (Finland) and Leibniz Institut für Sonnenphysik (Germany). We are grateful to the Institute for Astronomy, University of Hawaii, for allocating observing time for the DIPol-2 polarimeter, and to the Skinakas Observatory for performing the observations with the RoboPol polarimeter at their 1.3-m telescope.
Funding
H.K. acknowledges NASA support under grants 80NSSC18K0264, 80NSSC22K1291, 80NSSC21K1817, and NNX16AC42G. F.Mu., J.R., S.B., S.F., A.R., P.So., E.D.M., E.Co., A.D.M., G.M., Y.E., R.F., F.L.M., M.Pe., and A.T. were funded through contract ASI-INAF-2017-12-H0. L.B., R.Bo., R.Be., A.Br., L.L., S.Ca., S.M., A.Man., C.O., M.P.-R., C.S., and G.S. were funded by the ASI through contracts ASI-INFN-2017.13-H0 and ASI-INFN 2021-43-HH.0. M.Pi. was funded through contract ASI-INAF-2022-14-HH.0. I.A. acknowledges support from MICINN (Ministerio de Ciencia e Innovación) Severo Ochoa award for the IAA-CSIC (SEV-2017-0709) and through grants AYA2016-80889-P and PID2019-107847RB-C44. M.D., J.S., and V.Ka. acknowledge support from GACR (Grantová agentura České republiky) project 21-06825X and institutional support from the Astronomical Institute of the Czech Academy of Sciences (RVO:67985815). J.A.G. acknowledges support from NASA grant 80NSSC20K0540. J.Pod. acknowledges support from Charles University project GA UK No. 174121 and from the Barrande Fellowship Programme of the Czech and French governments. A.V., J.Pou., and S.S.T. acknowledge support from Russian Science Foundation grant 20-12-00364 and the Academy of Finland grants 333112, 347003, 349144, and 349906. M.N. acknowledges support from NASA under award number 80GSFC21M0002. T.K. is supported by JSPS KAKENHI Grant Number JP19K03902. P.-O.P. acknowledges support from the High Energy National Programme (PNHE) of Centre national de la recherche scientifique (CNRS) and from the French space agency (CNES) as well as from the Barrande Fellowship Programme of the Czech and French governments. D.B., S.K., N.M., and R.S. acknowledge support from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program under grant agreement no. 771282. V.Kr. thanks Vilho, Yrjö and Kalle Väisälä Foundation. P.T. and J.W. acknowledge funding from Bundesministerium für Wirtschaft and Klimaschutz under Deutsches Zentrum für Luft- und Raumfahrt grant 50 OR 1909. A.I. acknowledges support from the Royal Society. J.H. acknowledges the support of the Natural Sciences and Engineering Research Council of Canada (NSERC), funding reference number 5007110, and the Canadian Space Agency. S.G.J. and A.P.M. are supported in part by National Science Foundation grant AST-2108622, by NASA Fermi Guest Investigator grant 80NSSC21K1917, and by NASA Swift Guest Investigator grant 80NSSC22K0537. C.-Y.N. is supported by a General Research Fund of the Hong Kong Government under grant number HKU 17305419. P.Sl. acknowledges support from NASA Contract NAS8-03060.
Contributions
H.K., F.Mu., M.D., A.V., N.R.C., J.S., A.I., G.M., J.A.G., V.L., and J.Pou. participated in the planning of the observation campaign and the analysis and modeling of the data. M.N., T.K., J.Pod., J.R., and W.Z. contributed to the analysis or modeling of the data. A.V.B., V.Kr., S.V.B., M.K., T.S., D.B., S.K., N.M., and R.S. contributed to the optical polarimetric data. J.M.M. and P.D. contributed the Swift results; J.W. and P.T. the INTEGRAL results; and A.A.L., S.V.M., and A.N.S. the SRG/ART-XC results. S.B., F.C., N.D.L., L.L., A.Mar., T.M., N.O., A.R., P.-O.P, P.So., A.F.T., F.To., M.C.W., and S.Zh. contributed to the discussion of the results. F.Ma. and S.F. served as internal referees. All other authors contributed to the design and science case of the IXPE mission and to planning the observations used in this paper. All authors provided input and comments on the manuscript.
Data Availability
The May and June IXPE observations are available at https://heasarc.gsfc.nasa.gov/FTP/ixpe/data/obs/01/01002901/ and https://heasarc.gsfc.nasa.gov/FTP/ixpe/data/obs/01/01250101/, respectively. The NICER data are available at https://heasarc.gsfc.nasa.gov/docs/nicer/nicer_archive.html under ObsIDs 5100320101, 5100320102, 5100320103, 5100320104, 5100320105, 5100320106, and 5100320107. The NuSTAR data are available at https://heasarc.gsfc.nasa.gov/db-perl/W3Browse/w3table.pl?tablehead=name%3Dnumaster&Action=More+Options under ObsIDs 30702017002, 30702017004, and 30702017006. The SWIFT XRT data are available at https://heasarc.gsfc.nasa.gov/cgi-bin/W3Browse/swift.pl under ObsIDs 00034310009, 00034310010, 00034310011, 00034310012, 00034310013, and 00034310014. The extracted INTEGRAL ISGRI data are archived at Zenodo (32). The SRG ART-XC data are available at ftp://hea.iki.rssi.ru/public/SRG/ART-XC/data/Cygnus_X-1/. The MAXI light curves are available at http://maxi.riken.jp/star_data/J1958+352/J1958+352.html. The raw DIPol-2 and RoboPol data are archived at Zenodo (33, 34). The kerrC code (13) is available at https://gitlab.com/krawcz/kerrc-x-ray-fitting-code.git. The MONK code (35) is available at https://projects.asu.cas.cz/zhang/monk. The ixpeobssim software is available at https://github.com/lucabaldini/ixpeobssim and documented at https://ixpeobssim.readthedocs.io. Our derived x-ray polarization measurements are listed in tables S1 and S2, and the optical polarization measurements are listed in table S4. The numerical results of our model fitting are listed in table S5. Our models of polarized emission in the truncated disk geometry are archived at Zenodo (36).
Supplemental Material
Files
Name | Size | Download all |
---|---|---|
md5:854d38241f84b3eb595dba4522ce2761
|
678.4 kB | Preview Download |
md5:2ef334fb52d380e83a5c4808387f5408
|
1.8 MB | Preview Download |
Additional details
- Accepted
-
2022-10-17Accepted
- Available
-
2022-11-03Published online
- Publication Status
- Published