Published April 2023 | Version Published
Journal Article Open

Euclid preparation – XXIII. Derivation of galaxy physical properties with deep machine learning using mock fluxes and H-band images

Creators

  • 1. ROR icon University of Padua
  • 2. INAF-Osservatorio di Astrofisica e Scienza dello Spazio di Bologna, Via Piero Gobetti 93/3, I-40129 Bologna, Italy
  • 3. ROR icon University of Nottingham
  • 4. ROR icon University of Manchester
  • 5. ROR icon Ghent University
  • 6. ROR icon INFN Sezione di Napoli
  • 7. ROR icon Astronomical Observatory of Capodimonte
  • 8. ROR icon University of Naples Federico II
  • 9. ROR icon University of Porto
  • 10. ROR icon Arcetri Astrophysical Observatory
  • 11. ROR icon University of Portsmouth
  • 12. ROR icon National Institute for Astrophysics
  • 13. ROR icon University of Groningen
  • 14. ROR icon Institut d'Astrophysique Spatiale
  • 15. ROR icon University of Bologna
  • 16. ROR icon INFN Sezione di Bologna
  • 17. ROR icon Ludwig-Maximilians-Universität München
  • 18. ROR icon Max Planck Institute for Extraterrestrial Physics
  • 19. ROR icon Osservatorio Astrofisico di Torino
  • 20. ROR icon INFN Sezione di Genova
  • 21. ROR icon INFN Sezione di Roma III
  • 22. ROR icon University of Turin
  • 23. ROR icon INFN Sezione di Torino
  • 24. ROR icon Istituto di Astrofisica Spaziale e Fisica Cosmica di Milano
  • 25. ROR icon Institute for High Energy Physics
  • 26. ROR icon Institut d'Estudis Espacials de Catalunya
  • 27. ROR icon Institute of Space Sciences
  • 28. INAF-Osservatorio Astronomico di Roma, Via Frascati 33, I-00078 Monteporzio Catone, Italy
  • 29. ROR icon University of Edinburgh
  • 30. ROR icon European Space Astronomy Centre
  • 31. ROR icon European Space Research Institute
  • 32. ROR icon University of Lyon System
  • 33. ROR icon École Polytechnique Fédérale de Lausanne
  • 34. ROR icon University College London
  • 35. ROR icon University of Lisbon
  • 36. ROR icon University of Geneva
  • 37. ROR icon University of Oxford
  • 38. ROR icon INFN Sezione di Padova
  • 39. ROR icon University of Paris
  • 40. ROR icon Trieste Astronomical Observatory
  • 41. ROR icon Center for Particle Physics of Marseilles
  • 42. ROR icon Osservatorio Astronomico di Padova
  • 43. ROR icon University of Milan
  • 44. ROR icon Brera Astronomical Observatory
  • 45. ROR icon INFN Sezione di Milano
  • 46. ROR icon University of Oslo
  • 47. ROR icon Jet Propulsion Lab
  • 48. ROR icon Technical University of Denmark
  • 49. ROR icon Max Planck Institute for Astronomy
  • 50. ROR icon University of Helsinki
  • 51. NOVA Optical Infrared Instrumentation Group at ASTRON, Oude Hoogeveensedijk 4, NL-7991 PD Dwingeloo, The Netherlands
  • 52. ROR icon University of Bonn
  • 53. ROR icon Durham University
  • 54. ROR icon Lagrange Laboratory
  • 55. ROR icon European Space Research and Technology Centre
  • 56. ROR icon Aarhus University
  • 57. ROR icon Agenzia Spaziale Italiana
  • 58. ROR icon Centre National d'Études Spatiales
  • 59. ROR icon Institute of Space Science
  • 60. ROR icon Astroparticle and Cosmology Laboratory
  • 61. ROR icon University of Chile
  • 62. ROR icon Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas
  • 63. ROR icon Polytechnic University of Cartagena
  • 64. ROR icon Infrared Processing and Analysis Center
  • 65. ROR icon California Institute of Technology
  • 66. ROR icon Instituto de Astrofísica de Canarias
  • 67. ROR icon Sorbonne University
  • 68. ROR icon Institut d'Astrophysique de Paris
  • 69. ROR icon Astrophysique, Instrumentation et Modélisation
  • 70. ROR icon Ames Research Center
  • 71. ROR icon Institute for Fundamental Physics of the Universe
  • 72. ROR icon University of Ferrara
  • 73. ROR icon Research Institute in Astrophysics and Planetology
  • 74. ROR icon RWTH Aachen University
  • 75. ROR icon University of California, Irvine
  • 76. Aix-Marseille Université, CNRS, CNES, LAM, F-13013 Marseille, France
  • 77. ROR icon Institute for Space Astrophysics and Planetology
  • 78. ROR icon University of Bristol
  • 79. ROR icon Institute for Theoretical Physics
  • 80. ROR icon Ruhr University Bochum
  • 81. ROR icon Lancaster University
  • 82. ROR icon Imperial College London
  • 83. ROR icon Grenoble Institute of Technology
  • 84. ROR icon University of Applied Sciences and Arts Northwestern Switzerland
  • 85. ROR icon University of Salento
  • 86. ROR icon INFN Sezione di Lecce
  • 87. ROR icon University of Zurich
  • 88. ROR icon Heidelberg University
  • 89. Faculty of Science, Université St Joseph, Beirut, Lebanon
  • 90. ROR icon INFN Sezione di Trieste
  • 91. ROR icon Princeton University
  • 92. ROR icon Helsinki Institute of Physics

Abstract

Next-generation telescopes, like Euclid, Rubin/LSST, and Roman, will open new windows on the Universe, allowing us to infer physical properties for tens of millions of galaxies. Machine-learning methods are increasingly becoming the most efficient tools to handle this enormous amount of data, because they are often faster and more accurate than traditional methods. We investigate how well redshifts, stellar masses, and star-formation rates (SFRs) can be measured with deep-learning algorithms for observed galaxies within data mimicking the Euclid and Rubin/LSST surveys. We find that deep-learning neural networks and convolutional neural networks (CNNs), which are dependent on the parameter space of the training sample, perform well in measuring the properties of these galaxies and have a better accuracy than methods based on spectral energy distribution fitting. CNNs allow the processing of multiband magnitudes together with H_E-band images. We find that the estimates of stellar masses improve with the use of an image, but those of redshift and SFR do not. Our best results are deriving (i) the redshift within a normalized error of <0.15 for 99.9 per cent of the galaxies with signal-to-noise ratio >3 in the H_E band; (ii) the stellar mass within a factor of two (⁠∼0.3 dex⁠) for 99.5 per cent of the considered galaxies; and (iii) the SFR within a factor of two (⁠∼0.3 dex⁠) for ∼70 per cent of the sample. We discuss the implications of our work for application to surveys as well as how measurements of these galaxy parameters can be improved with deep learning.

Copyright and License

This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model).

Acknowledgement

LB and CC acknowledge the support of the STFC Cosmic Vision funding. LB acknowledges the financial support of Agenzia Spaziale Italiana (ASI) under the research contract 2018-31-HH.0. SvM acknowledges funding from the European Research Council through the award of the Consolidator Grant ID 681627-BUILDUP. HH is supported by a Heisenberg grant of the Deutsche Forschungsgemeinschaft (Hi 1495/5-1) as well as an ERC Consolidator Grant (No. 770935). MB acknowledges financial contributions from the agreement ASI/INAF 2018-23-HH.0, Euclid ESA mission - Phase D. The Euclid Consortium acknowledges the European Space Agency and a number of agencies and institutes that have supported the development of Euclid, in particular the Academy of Finland, the Agenzia Spaziale Italiana, the Belgian Science Policy, the Canadian Euclid Consortium, the French Centre National d’Etudes Spatiales, the Deutsches Zentrum für Luft- und Raumfahrt, the Danish Space Research Institute, the Fundação para a Ciência e a Tecnologia, the Ministerio de Ciencia e Innovación, the National Aeronautics and Space Administration, the National Astronomical Observatory of Japan, the Netherlandse Onderzoekschool Voor Astronomie, the Norwegian Space Agency, the Romanian Space Agency, the State Secretariat for Education, Research and Innovation (SERI) at the Swiss Space Office (SSO), and the United Kingdom Space Agency. A complete and detailed list is available on the Euclid web site (http://www.euclid-ec.org). In this work, we made use of the numpy (Harris et al. 2020) package for Python.

Funding

LB and CC acknowledge the support of the STFC Cosmic Vision funding. LB acknowledges the financial support of Agenzia Spaziale Italiana (ASI) under the research contract 2018-31-HH.0. SvM acknowledges funding from the European Research Council through the award of the Consolidator Grant ID 681627-BUILDUP. HH is supported by a Heisenberg grant of the Deutsche Forschungsgemeinschaft (Hi 1495/5-1) as well as an ERC Consolidator Grant (No. 770935). MB acknowledges financial contributions from the agreement ASI/INAF 2018-23-HH.0, Euclid ESA mission - Phase D.

Data Availability

Data included in this paper will be available on request.

Supplemental Material

Supplementary data (PDF).

Files

stac3810.pdf

Files (7.6 MB)

Name Size Download all
md5:962aeb95acd7e68b852c2a7b8e7932c4
6.4 MB Preview Download
md5:7543e481096a49ad365973c13d5e6518
1.2 MB Preview Download

Additional details

Related works

Is new version of
Discussion Paper: arXiv:2206.14944 (arXiv)

Funding

Science and Technology Facilities Council
Cosmic Vision
Agenzia Spaziale Italiana
2018-31-HH.0
European Research Council
681627-BUILDUP
Deutsche Forschungsgemeinschaft
Hi 1495/5-1
European Research Council
770935
Agenzia Spaziale Italiana
2018-23-HH.0
European Space Agency

Dates

Accepted
2022-12-22
Accepted
Available
2023-01-09
Published
Available
2023-02-17
Corrected and typeset

Caltech Custom Metadata

Caltech groups
Infrared Processing and Analysis Center (IPAC)
Publication Status
Published