Euclid preparation – XXIII. Derivation of galaxy physical properties with deep machine learning using mock fluxes and H-band images
- Creators
- Euclid Collaboration
- Bisigello, L1, 2, 3
- Conselice, C J4
- Baes, M5
- Bolzonella, M2
- Brescia, M6
- Cavuoti, S6, 7, 8
- Cucciati, O2
- Humphrey, A9
- Hunt, L K10
- Maraston, C11
- Pozzetti, L12
- Tortora, C7
- van Mierlo, S E13
- Aghanim, N14
- Auricchio, N2
- Baldi, M2, 15, 16
- Bender, R17, 18
- Bodendorf, C18
- Bonino, D19
- Branchini, E20, 21
- Brinchmann, J9
- Camera, S19, 22, 23
- Capobianco, V19
- Carbone, C24
- Carretero, J25
- Castander, F J26, 27
- Castellano, M28
- Cimatti, A10, 15
- Congedo, G29
- Conversi, L30, 31
- Copin, Y32
- Corcione, L19
- Courbin, F33
- Cropper, M34
- Da Silva, A35
- Degaudenzi, H36
- Douspis, M14
- Dubath, F36
- Duncan, C A J4, 37
- Dupac, X30
- Dusini, S38
- Farrens, S39
- Ferriol, S32
- Frailis, M40
- Franceschi, E2
- Franzetti, P24
- Fumana, M24
- Garilli, B24
- Gillard, W41
- Gillis, B29
- Giocoli, C12, 16
- Grazian, A42
- Grupp, F17, 18
- Guzzo, L43, 44, 45
- Haugan, S V H46
- Holmes, W47
- Hormuth, F
- Hornstrup, A48
- Jahnke, K49
- Kümmel, M17
- Kermiche, S41
- Kiessling, A47
- Kilbinger, M39
- Kohley, R30
- Kunz, M36
- Kurki-Suonio, H50
- Ligori, S19
- Lilje, P B46
- Lloro, I51
- Maiorano, E2
- Mansutti, O40
- Marggraf, O52
- Markovic, K47
- Marulli, F2, 16, 15
- Massey, R53
- Maurogordato, S54
- Medinaceli, E2
- Meneghetti, M2, 16
- Merlin, E28
- Meylan, G33
- Moresco, M2, 15
- Moscardini, L2, 16, 15
- Munari, E40
- Niemi, S M55
- Padilla, C25
- Paltani, S36
- Pasian, F40
- Pedersen, K56
- Pettorino, V39
- Polenta, G57
- Poncet, M58
- Popa, L59
- Raison, F18
- Renzi, A1, 38
- Rhodes, J47
- Riccio, G7
- Rix, H -W49
- Romelli, E40
- Roncarelli, M2, 15
- Rosset, C60
- Rossetti, E15
- Saglia, R17, 18
- Sapone, D61
- Sartoris, B17, 40
- Schneider, P52
- Scodeggio, M24
- Secroun, A41
- Seidel, G49
- Sirignano, C1, 38
- Sirri, G16
- Stanco, L38
- Tallada-Crespí, P62
- Tavagnacco, D40
- Taylor, A N29
- Tereno, I35
- Toledo-Moreo, R63
- Torradeflot, F62
- Tutusaus, I36
- Valentijn, E A13
- Valenziano, L2, 16
- Vassallo, T40
- Wang, Y64, 65
- Zacchei, A40
- Zamorani, G2
- Zoubian, J41
- Andreon, S44
- Bardelli, S2
- Boucaud, A60
- Colodro-Conde, C66
- Ferdinando, D Di16
- Graciá-Carpio, J18
- Lindholm, V50
- Maino, D24, 43, 45
- Mei, S60
- Scottez, V67, 68
- Sureau, F69
- Tenti, M16
- Zucca, E2
- Borlaff, A S70
- Ballardini, M2, 15, 16
- Biviano, A40, 71
- Bozzo, E36
- Burigana, C16, 72, 12
- Cabanac, R73
- Cappi, A2, 54
- Carvalho, C S35
- Casas, S74
- Castignani, G2, 15
- Cooray, A75
- Coupon, J36
- Courtois, H M32
- Cuby, J76
- Davini, S20
- De Lucia, G40
- Desprez, G36
- Dole, H14
- Escartin, J A18
- Escoffier, S41
- Farina, M77
- Fotopoulou, S78
- Ganga, K60
- Garcia-Bellido, J79
- George, K17
- Giacomini, F16
- Gozaliasl, G50
- Hildebrandt, H80
- Hook, I81
- Huertas-Company, M66, 39
- Kansal, V69
- Keihanen, E50
- Kirkpatrick, C C50
- Loureiro, A29, 34, 82
- Macías-Pérez, J F83
- Magliocchetti, M77
- Mainetti, G
- Marcin, S84
- Martinelli, M28
- Martinet, N76
- Metcalf, R B2, 15
- Monaco, P
- Morgante, G2
- Nadathur, S11
- Nucita, A A85, 86
- Patrizii, L16
- Peel, A33
- Potter, D87
- Pourtsidou, A29
- Pöntinen, M50
- Reimberg, P68
- Sánchez, A G18
- Sakr, Z73, 88, 89
- Schirmer, M49
- Sefusatti, E40, 71, 90
- Sereno, M2, 16
- Stadel, J87
- Teyssier, R91
- Valieri, C16
- Valiviita, J92
- Viel, M
- 1. University of Padua
- 2. INAF-Osservatorio di Astrofisica e Scienza dello Spazio di Bologna, Via Piero Gobetti 93/3, I-40129 Bologna, Italy
- 3. University of Nottingham
- 4. University of Manchester
- 5. Ghent University
- 6. INFN Sezione di Napoli
- 7. Astronomical Observatory of Capodimonte
- 8. University of Naples Federico II
- 9. University of Porto
- 10. Arcetri Astrophysical Observatory
- 11. University of Portsmouth
- 12. National Institute for Astrophysics
- 13. University of Groningen
- 14. Institut d'Astrophysique Spatiale
- 15. University of Bologna
- 16. INFN Sezione di Bologna
- 17. Ludwig-Maximilians-Universität München
- 18. Max Planck Institute for Extraterrestrial Physics
- 19. Osservatorio Astrofisico di Torino
- 20. INFN Sezione di Genova
- 21. INFN Sezione di Roma III
- 22. University of Turin
- 23. INFN Sezione di Torino
- 24. Istituto di Astrofisica Spaziale e Fisica Cosmica di Milano
- 25. Institute for High Energy Physics
- 26. Institut d'Estudis Espacials de Catalunya
- 27. Institute of Space Sciences
- 28. INAF-Osservatorio Astronomico di Roma, Via Frascati 33, I-00078 Monteporzio Catone, Italy
- 29. University of Edinburgh
- 30. European Space Astronomy Centre
- 31. European Space Research Institute
- 32. University of Lyon System
- 33. École Polytechnique Fédérale de Lausanne
- 34. University College London
- 35. University of Lisbon
- 36. University of Geneva
- 37. University of Oxford
- 38. INFN Sezione di Padova
- 39. University of Paris
- 40. Trieste Astronomical Observatory
- 41. Center for Particle Physics of Marseilles
- 42. Osservatorio Astronomico di Padova
- 43. University of Milan
- 44. Brera Astronomical Observatory
- 45. INFN Sezione di Milano
- 46. University of Oslo
- 47. Jet Propulsion Lab
- 48. Technical University of Denmark
- 49. Max Planck Institute for Astronomy
- 50. University of Helsinki
- 51. NOVA Optical Infrared Instrumentation Group at ASTRON, Oude Hoogeveensedijk 4, NL-7991 PD Dwingeloo, The Netherlands
- 52. University of Bonn
- 53. Durham University
- 54. Lagrange Laboratory
- 55. European Space Research and Technology Centre
- 56. Aarhus University
- 57. Agenzia Spaziale Italiana
- 58. Centre National d'Études Spatiales
- 59. Institute of Space Science
- 60. Astroparticle and Cosmology Laboratory
- 61. University of Chile
- 62. Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas
- 63. Polytechnic University of Cartagena
- 64. Infrared Processing and Analysis Center
- 65. California Institute of Technology
- 66. Instituto de Astrofísica de Canarias
- 67. Sorbonne University
- 68. Institut d'Astrophysique de Paris
- 69. Astrophysique, Instrumentation et Modélisation
- 70. Ames Research Center
- 71. Institute for Fundamental Physics of the Universe
- 72. University of Ferrara
- 73. Research Institute in Astrophysics and Planetology
- 74. RWTH Aachen University
- 75. University of California, Irvine
- 76. Aix-Marseille Université, CNRS, CNES, LAM, F-13013 Marseille, France
- 77. Institute for Space Astrophysics and Planetology
- 78. University of Bristol
- 79. Institute for Theoretical Physics
- 80. Ruhr University Bochum
- 81. Lancaster University
- 82. Imperial College London
- 83. Grenoble Institute of Technology
- 84. University of Applied Sciences and Arts Northwestern Switzerland
- 85. University of Salento
- 86. INFN Sezione di Lecce
- 87. University of Zurich
- 88. Heidelberg University
- 89. Faculty of Science, Université St Joseph, Beirut, Lebanon
- 90. INFN Sezione di Trieste
- 91. Princeton University
- 92. Helsinki Institute of Physics
Abstract
Next-generation telescopes, like Euclid, Rubin/LSST, and Roman, will open new windows on the Universe, allowing us to infer physical properties for tens of millions of galaxies. Machine-learning methods are increasingly becoming the most efficient tools to handle this enormous amount of data, because they are often faster and more accurate than traditional methods. We investigate how well redshifts, stellar masses, and star-formation rates (SFRs) can be measured with deep-learning algorithms for observed galaxies within data mimicking the Euclid and Rubin/LSST surveys. We find that deep-learning neural networks and convolutional neural networks (CNNs), which are dependent on the parameter space of the training sample, perform well in measuring the properties of these galaxies and have a better accuracy than methods based on spectral energy distribution fitting. CNNs allow the processing of multiband magnitudes together with H_E-band images. We find that the estimates of stellar masses improve with the use of an image, but those of redshift and SFR do not. Our best results are deriving (i) the redshift within a normalized error of <0.15 for 99.9 per cent of the galaxies with signal-to-noise ratio >3 in the H_E band; (ii) the stellar mass within a factor of two (∼0.3 dex) for 99.5 per cent of the considered galaxies; and (iii) the SFR within a factor of two (∼0.3 dex) for ∼70 per cent of the sample. We discuss the implications of our work for application to surveys as well as how measurements of these galaxy parameters can be improved with deep learning.
Copyright and License
Acknowledgement
LB and CC acknowledge the support of the STFC Cosmic Vision funding. LB acknowledges the financial support of Agenzia Spaziale Italiana (ASI) under the research contract 2018-31-HH.0. SvM acknowledges funding from the European Research Council through the award of the Consolidator Grant ID 681627-BUILDUP. HH is supported by a Heisenberg grant of the Deutsche Forschungsgemeinschaft (Hi 1495/5-1) as well as an ERC Consolidator Grant (No. 770935). MB acknowledges financial contributions from the agreement ASI/INAF 2018-23-HH.0, Euclid ESA mission - Phase D. The Euclid Consortium acknowledges the European Space Agency and a number of agencies and institutes that have supported the development of Euclid, in particular the Academy of Finland, the Agenzia Spaziale Italiana, the Belgian Science Policy, the Canadian Euclid Consortium, the French Centre National d’Etudes Spatiales, the Deutsches Zentrum für Luft- und Raumfahrt, the Danish Space Research Institute, the Fundação para a Ciência e a Tecnologia, the Ministerio de Ciencia e Innovación, the National Aeronautics and Space Administration, the National Astronomical Observatory of Japan, the Netherlandse Onderzoekschool Voor Astronomie, the Norwegian Space Agency, the Romanian Space Agency, the State Secretariat for Education, Research and Innovation (SERI) at the Swiss Space Office (SSO), and the United Kingdom Space Agency. A complete and detailed list is available on the Euclid web site (http://www.euclid-ec.org). In this work, we made use of the numpy (Harris et al. 2020) package for Python.
Funding
LB and CC acknowledge the support of the STFC Cosmic Vision funding. LB acknowledges the financial support of Agenzia Spaziale Italiana (ASI) under the research contract 2018-31-HH.0. SvM acknowledges funding from the European Research Council through the award of the Consolidator Grant ID 681627-BUILDUP. HH is supported by a Heisenberg grant of the Deutsche Forschungsgemeinschaft (Hi 1495/5-1) as well as an ERC Consolidator Grant (No. 770935). MB acknowledges financial contributions from the agreement ASI/INAF 2018-23-HH.0, Euclid ESA mission - Phase D.
Data Availability
Data included in this paper will be available on request.
Supplemental Material
Supplementary data (PDF).
Files
Name | Size | Download all |
---|---|---|
md5:7543e481096a49ad365973c13d5e6518
|
1.2 MB | Preview Download |
md5:962aeb95acd7e68b852c2a7b8e7932c4
|
6.4 MB | Preview Download |
Additional details
- Science and Technology Facilities Council
- Cosmic Vision
- Agenzia Spaziale Italiana
- 2018-31-HH.0
- European Research Council
- 681627-BUILDUP
- Deutsche Forschungsgemeinschaft
- Hi 1495/5-1
- European Research Council
- 770935
- Agenzia Spaziale Italiana
- 2018-23-HH.0
- European Space Agency
- Accepted
-
2022-12-22Accepted
- Available
-
2023-01-09Published
- Available
-
2023-02-17Corrected and typeset
- Caltech groups
- Infrared Processing and Analysis Center (IPAC)
- Publication Status
- Published