Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published April 2023 | Published
Journal Article Open

Euclid preparation – XXIII. Derivation of galaxy physical properties with deep machine learning using mock fluxes and H-band images

Euclid Collaboration
Bisigello, L1, 2, 3 ORCID icon
Conselice, C J4 ORCID icon
Baes, M5 ORCID icon
Bolzonella, M2 ORCID icon
Brescia, M6 ORCID icon
Cavuoti, S6, 7, 8 ORCID icon
Cucciati, O2 ORCID icon
Humphrey, A9 ORCID icon
Hunt, L K10 ORCID icon
Maraston, C11 ORCID icon
Pozzetti, L12 ORCID icon
Tortora, C7 ORCID icon
van Mierlo, S E13 ORCID icon
Aghanim, N14
Auricchio, N2 ORCID icon
Baldi, M2, 15, 16 ORCID icon
Bender, R17, 18 ORCID icon
Bodendorf, C18
Bonino, D19 ORCID icon
Branchini, E20, 21 ORCID icon
Brinchmann, J9 ORCID icon
Camera, S19, 22, 23 ORCID icon
Capobianco, V19 ORCID icon
Carbone, C24 ORCID icon
Carretero, J25 ORCID icon
Castander, F J26, 27 ORCID icon
Castellano, M28 ORCID icon
Cimatti, A10, 15 ORCID icon
Congedo, G29 ORCID icon
Conversi, L30, 31 ORCID icon
Copin, Y32 ORCID icon
Corcione, L19 ORCID icon
Courbin, F33 ORCID icon
Cropper, M34 ORCID icon
Da Silva, A35 ORCID icon
Degaudenzi, H36 ORCID icon
Douspis, M14 ORCID icon
Dubath, F36
Duncan, C A J4, 37 ORCID icon
Dupac, X30
Dusini, S38 ORCID icon
Farrens, S39 ORCID icon
Ferriol, S32
Frailis, M40 ORCID icon
Franceschi, E2 ORCID icon
Franzetti, P24 ORCID icon
Fumana, M24 ORCID icon
Garilli, B24 ORCID icon
Gillard, W41 ORCID icon
Gillis, B29 ORCID icon
Giocoli, C12, 16 ORCID icon
Grazian, A42 ORCID icon
Grupp, F17, 18 ORCID icon
Guzzo, L43, 44, 45 ORCID icon
Haugan, S V H46 ORCID icon
Holmes, W47
Hormuth, F
Hornstrup, A48 ORCID icon
Jahnke, K49 ORCID icon
Kümmel, M17
Kermiche, S41 ORCID icon
Kiessling, A47 ORCID icon
Kilbinger, M39 ORCID icon
Kohley, R30
Kunz, M36 ORCID icon
Kurki-Suonio, H50 ORCID icon
Ligori, S19 ORCID icon
Lilje, P B46 ORCID icon
Lloro, I51
Maiorano, E2 ORCID icon
Mansutti, O40 ORCID icon
Marggraf, O52 ORCID icon
Markovic, K47 ORCID icon
Marulli, F2, 16, 15 ORCID icon
Massey, R53 ORCID icon
Maurogordato, S54
Medinaceli, E2 ORCID icon
Meneghetti, M2, 16 ORCID icon
Merlin, E28 ORCID icon
Meylan, G33
Moresco, M2, 15 ORCID icon
Moscardini, L2, 16, 15 ORCID icon
Munari, E40 ORCID icon
Niemi, S M55
Padilla, C25 ORCID icon
Paltani, S36
Pasian, F40 ORCID icon
Pedersen, K56
Pettorino, V39 ORCID icon
Polenta, G57 ORCID icon
Poncet, M58
Popa, L59
Raison, F18
Renzi, A1, 38 ORCID icon
Rhodes, J47 ORCID icon
Riccio, G7 ORCID icon
Rix, H -W49 ORCID icon
Romelli, E40 ORCID icon
Roncarelli, M2, 15 ORCID icon
Rosset, C60
Rossetti, E15 ORCID icon
Saglia, R17, 18 ORCID icon
Sapone, D61
Sartoris, B17, 40 ORCID icon
Schneider, P52
Scodeggio, M24 ORCID icon
Secroun, A41 ORCID icon
Seidel, G49 ORCID icon
Sirignano, C1, 38 ORCID icon
Sirri, G16 ORCID icon
Stanco, L38
Tallada-Crespí, P62 ORCID icon
Tavagnacco, D40 ORCID icon
Taylor, A N29
Tereno, I35 ORCID icon
Toledo-Moreo, R63 ORCID icon
Torradeflot, F62 ORCID icon
Tutusaus, I36 ORCID icon
Valentijn, E A13 ORCID icon
Valenziano, L2, 16 ORCID icon
Vassallo, T40 ORCID icon
Wang, Y64, 65 ORCID icon
Zacchei, A40 ORCID icon
Zamorani, G2 ORCID icon
Zoubian, J41
Andreon, S44 ORCID icon
Bardelli, S2 ORCID icon
Boucaud, A60 ORCID icon
Colodro-Conde, C66
Ferdinando, D Di16
Graciá-Carpio, J18 ORCID icon
Lindholm, V50 ORCID icon
Maino, D24, 43, 45 ORCID icon
Mei, S60 ORCID icon
Scottez, V67, 68
Sureau, F69 ORCID icon
Tenti, M16
Zucca, E2 ORCID icon
Borlaff, A S70 ORCID icon
Ballardini, M2, 15, 16 ORCID icon
Biviano, A40, 71 ORCID icon
Bozzo, E36 ORCID icon
Burigana, C16, 72, 12 ORCID icon
Cabanac, R73 ORCID icon
Cappi, A2, 54 ORCID icon
Carvalho, C S35 ORCID icon
Casas, S74 ORCID icon
Castignani, G2, 15 ORCID icon
Cooray, A75 ORCID icon
Coupon, J36
Courtois, H M32 ORCID icon
Cuby, J76
Davini, S20 ORCID icon
De Lucia, G40 ORCID icon
Desprez, G36 ORCID icon
Dole, H14
Escartin, J A18
Escoffier, S41 ORCID icon
Farina, M77 ORCID icon
Fotopoulou, S78
Ganga, K60 ORCID icon
Garcia-Bellido, J79 ORCID icon
George, K17 ORCID icon
Giacomini, F16 ORCID icon
Gozaliasl, G50 ORCID icon
Hildebrandt, H80 ORCID icon
Hook, I81 ORCID icon
Huertas-Company, M66, 39 ORCID icon
Kansal, V69 ORCID icon
Keihanen, E50 ORCID icon
Kirkpatrick, C C50
Loureiro, A29, 34, 82 ORCID icon
Macías-Pérez, J F83 ORCID icon
Magliocchetti, M77 ORCID icon
Mainetti, G ORCID icon
Marcin, S84
Martinelli, M28 ORCID icon
Martinet, N76 ORCID icon
Metcalf, R B2, 15 ORCID icon
Monaco, P ORCID icon
Morgante, G2 ORCID icon
Nadathur, S11 ORCID icon
Nucita, A A85, 86 ORCID icon
Patrizii, L16
Peel, A33 ORCID icon
Potter, D87 ORCID icon
Pourtsidou, A29 ORCID icon
Pöntinen, M50 ORCID icon
Reimberg, P68 ORCID icon
Sánchez, A G18 ORCID icon
Sakr, Z73, 88, 89 ORCID icon
Schirmer, M49 ORCID icon
Sefusatti, E40, 71, 90 ORCID icon
Sereno, M2, 16 ORCID icon
Stadel, J87 ORCID icon
Teyssier, R91
Valieri, C16
Valiviita, J92 ORCID icon
Viel, M ORCID icon
  • 1. ROR icon University of Padua
  • 2. INAF-Osservatorio di Astrofisica e Scienza dello Spazio di Bologna, Via Piero Gobetti 93/3, I-40129 Bologna, Italy
  • 3. ROR icon University of Nottingham
  • 4. ROR icon University of Manchester
  • 5. ROR icon Ghent University
  • 6. ROR icon INFN Sezione di Napoli
  • 7. ROR icon Astronomical Observatory of Capodimonte
  • 8. ROR icon University of Naples Federico II
  • 9. ROR icon University of Porto
  • 10. ROR icon Arcetri Astrophysical Observatory
  • 11. ROR icon University of Portsmouth
  • 12. ROR icon National Institute for Astrophysics
  • 13. ROR icon University of Groningen
  • 14. ROR icon Institut d'Astrophysique Spatiale
  • 15. ROR icon University of Bologna
  • 16. ROR icon INFN Sezione di Bologna
  • 17. ROR icon Ludwig-Maximilians-Universität München
  • 18. ROR icon Max Planck Institute for Extraterrestrial Physics
  • 19. ROR icon Osservatorio Astrofisico di Torino
  • 20. ROR icon INFN Sezione di Genova
  • 21. ROR icon INFN Sezione di Roma III
  • 22. ROR icon University of Turin
  • 23. ROR icon INFN Sezione di Torino
  • 24. ROR icon Istituto di Astrofisica Spaziale e Fisica Cosmica di Milano
  • 25. ROR icon Institute for High Energy Physics
  • 26. ROR icon Institut d'Estudis Espacials de Catalunya
  • 27. ROR icon Institute of Space Sciences
  • 28. INAF-Osservatorio Astronomico di Roma, Via Frascati 33, I-00078 Monteporzio Catone, Italy
  • 29. ROR icon University of Edinburgh
  • 30. ROR icon European Space Astronomy Centre
  • 31. ROR icon European Space Research Institute
  • 32. ROR icon University of Lyon System
  • 33. ROR icon École Polytechnique Fédérale de Lausanne
  • 34. ROR icon University College London
  • 35. ROR icon University of Lisbon
  • 36. ROR icon University of Geneva
  • 37. ROR icon University of Oxford
  • 38. ROR icon INFN Sezione di Padova
  • 39. ROR icon University of Paris
  • 40. ROR icon Trieste Astronomical Observatory
  • 41. ROR icon Center for Particle Physics of Marseilles
  • 42. ROR icon Osservatorio Astronomico di Padova
  • 43. ROR icon University of Milan
  • 44. ROR icon Brera Astronomical Observatory
  • 45. ROR icon INFN Sezione di Milano
  • 46. ROR icon University of Oslo
  • 47. ROR icon Jet Propulsion Lab
  • 48. ROR icon Technical University of Denmark
  • 49. ROR icon Max Planck Institute for Astronomy
  • 50. ROR icon University of Helsinki
  • 51. NOVA Optical Infrared Instrumentation Group at ASTRON, Oude Hoogeveensedijk 4, NL-7991 PD Dwingeloo, The Netherlands
  • 52. ROR icon University of Bonn
  • 53. ROR icon Durham University
  • 54. ROR icon Lagrange Laboratory
  • 55. ROR icon European Space Research and Technology Centre
  • 56. ROR icon Aarhus University
  • 57. ROR icon Agenzia Spaziale Italiana
  • 58. ROR icon Centre National d'Études Spatiales
  • 59. ROR icon Institute of Space Science
  • 60. ROR icon Astroparticle and Cosmology Laboratory
  • 61. ROR icon University of Chile
  • 62. ROR icon Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas
  • 63. ROR icon Polytechnic University of Cartagena
  • 64. ROR icon Infrared Processing and Analysis Center
  • 65. ROR icon California Institute of Technology
  • 66. ROR icon Instituto de Astrofísica de Canarias
  • 67. ROR icon Sorbonne University
  • 68. ROR icon Institut d'Astrophysique de Paris
  • 69. ROR icon Astrophysique, Instrumentation et Modélisation
  • 70. ROR icon Ames Research Center
  • 71. ROR icon Institute for Fundamental Physics of the Universe
  • 72. ROR icon University of Ferrara
  • 73. ROR icon Research Institute in Astrophysics and Planetology
  • 74. ROR icon RWTH Aachen University
  • 75. ROR icon University of California, Irvine
  • 76. Aix-Marseille Université, CNRS, CNES, LAM, F-13013 Marseille, France
  • 77. ROR icon Institute for Space Astrophysics and Planetology
  • 78. ROR icon University of Bristol
  • 79. ROR icon Institute for Theoretical Physics
  • 80. ROR icon Ruhr University Bochum
  • 81. ROR icon Lancaster University
  • 82. ROR icon Imperial College London
  • 83. ROR icon Grenoble Institute of Technology
  • 84. ROR icon University of Applied Sciences and Arts Northwestern Switzerland
  • 85. ROR icon University of Salento
  • 86. ROR icon INFN Sezione di Lecce
  • 87. ROR icon University of Zurich
  • 88. ROR icon Heidelberg University
  • 89. Faculty of Science, Université St Joseph, Beirut, Lebanon
  • 90. ROR icon INFN Sezione di Trieste
  • 91. ROR icon Princeton University
  • 92. ROR icon Helsinki Institute of Physics

Abstract

Next-generation telescopes, like Euclid, Rubin/LSST, and Roman, will open new windows on the Universe, allowing us to infer physical properties for tens of millions of galaxies. Machine-learning methods are increasingly becoming the most efficient tools to handle this enormous amount of data, because they are often faster and more accurate than traditional methods. We investigate how well redshifts, stellar masses, and star-formation rates (SFRs) can be measured with deep-learning algorithms for observed galaxies within data mimicking the Euclid and Rubin/LSST surveys. We find that deep-learning neural networks and convolutional neural networks (CNNs), which are dependent on the parameter space of the training sample, perform well in measuring the properties of these galaxies and have a better accuracy than methods based on spectral energy distribution fitting. CNNs allow the processing of multiband magnitudes together with H_E-band images. We find that the estimates of stellar masses improve with the use of an image, but those of redshift and SFR do not. Our best results are deriving (i) the redshift within a normalized error of <0.15 for 99.9 per cent of the galaxies with signal-to-noise ratio >3 in the H_E band; (ii) the stellar mass within a factor of two (⁠∼0.3 dex⁠) for 99.5 per cent of the considered galaxies; and (iii) the SFR within a factor of two (⁠∼0.3 dex⁠) for ∼70 per cent of the sample. We discuss the implications of our work for application to surveys as well as how measurements of these galaxy parameters can be improved with deep learning.

Copyright and License

This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model).

Acknowledgement

LB and CC acknowledge the support of the STFC Cosmic Vision funding. LB acknowledges the financial support of Agenzia Spaziale Italiana (ASI) under the research contract 2018-31-HH.0. SvM acknowledges funding from the European Research Council through the award of the Consolidator Grant ID 681627-BUILDUP. HH is supported by a Heisenberg grant of the Deutsche Forschungsgemeinschaft (Hi 1495/5-1) as well as an ERC Consolidator Grant (No. 770935). MB acknowledges financial contributions from the agreement ASI/INAF 2018-23-HH.0, Euclid ESA mission - Phase D. The Euclid Consortium acknowledges the European Space Agency and a number of agencies and institutes that have supported the development of Euclid, in particular the Academy of Finland, the Agenzia Spaziale Italiana, the Belgian Science Policy, the Canadian Euclid Consortium, the French Centre National d’Etudes Spatiales, the Deutsches Zentrum für Luft- und Raumfahrt, the Danish Space Research Institute, the Fundação para a Ciência e a Tecnologia, the Ministerio de Ciencia e Innovación, the National Aeronautics and Space Administration, the National Astronomical Observatory of Japan, the Netherlandse Onderzoekschool Voor Astronomie, the Norwegian Space Agency, the Romanian Space Agency, the State Secretariat for Education, Research and Innovation (SERI) at the Swiss Space Office (SSO), and the United Kingdom Space Agency. A complete and detailed list is available on the Euclid web site (http://www.euclid-ec.org). In this work, we made use of the numpy (Harris et al. 2020) package for Python.

Funding

LB and CC acknowledge the support of the STFC Cosmic Vision funding. LB acknowledges the financial support of Agenzia Spaziale Italiana (ASI) under the research contract 2018-31-HH.0. SvM acknowledges funding from the European Research Council through the award of the Consolidator Grant ID 681627-BUILDUP. HH is supported by a Heisenberg grant of the Deutsche Forschungsgemeinschaft (Hi 1495/5-1) as well as an ERC Consolidator Grant (No. 770935). MB acknowledges financial contributions from the agreement ASI/INAF 2018-23-HH.0, Euclid ESA mission - Phase D.

Data Availability

Data included in this paper will be available on request.

Supplemental Material

Supplementary data (PDF).

Files

stac3810.pdf
Files (7.6 MB)
Name Size Download all
md5:7543e481096a49ad365973c13d5e6518
1.2 MB Preview Download
md5:962aeb95acd7e68b852c2a7b8e7932c4
6.4 MB Preview Download

Additional details

Created:
November 22, 2024
Modified:
November 22, 2024