Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published December 20, 2009 | Published
Journal Article Open

The Blast Survey of the Vela Molecular Cloud: Physical Properties of the Dense Cores in Vela-D

Abstract

The Balloon-borne Large-Aperture Submillimeter Telescope (BLAST) carried out a 250, 350, and 500 μm survey of the galactic plane encompassing the Vela Molecular Ridge, with the primary goal of identifying the coldest dense cores possibly associated with the earliest stages of star formation. Here, we present the results from observations of the Vela-D region, covering about 4 deg^2, in which we find 141 BLAST cores. We exploit existing data taken with the Spitzer MIPS, IRAC, and SEST-SIMBA instruments to constrain their (single-temperature) spectral energy distributions, assuming a dust emissivity index β = 2.0. This combination of data allows us to determine the temperature, luminosity, and mass of each BLAST core, and also enables us to separate starless from protostellar sources. We also analyze the effects that the uncertainties on the derived physical parameters of the individual sources have on the overall physical properties of starless and protostellar cores, and we find that there appear to be a smooth transition from the pre- to the protostellar phase. In particular, for protostellar cores we find a correlation between the MIPS24 flux, associated with the central protostar, and the temperature of the dust envelope. We also find that the core mass function of the Vela-D cores has a slope consistent with other similar (sub)millimeter surveys.

Additional Information

© 2009 American Astronomical Society. Print publication: Issue 2 (2009 December 20); received 2009 September 2; accepted for publication 2009 November 3; published 2009 December 7. We acknowledge the support of NASA through grant numbers NAG5-12785,NAG5-13301, and NNGO-6GI11G, the NSF Office of Polar Programs, the Canadian Space Agency, the Natural Sciences and Engineering Research Council (NSERC) of Canada, and the UK Science and Technology Facilities Council (STFC). This work is also based, in part, on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech. L.O. acknowledges partial support by the Puerto Rico Space Grant Consortium and by the Decanato de Estudios Graduados e Investigación of the University of Puerto Rico.

Attached Files

Published - Olmi2009p6665Astrophys_J.pdf

Files

Olmi2009p6665Astrophys_J.pdf
Files (2.3 MB)
Name Size Download all
md5:5e1913efd0d44d53aafb98bb3d52c18c
2.3 MB Preview Download

Additional details

Created:
August 21, 2023
Modified:
October 19, 2023