Redox-driven mineral and organic associations in Jezero Crater, Mars
- Creators
-
Hurowitz, Joel A.1
-
Tice, M. M.2
- Allwood, A. C.3
-
Cable, M. L.3
-
Hand, K. P.3
-
Murphy, A. E.4
-
Uckert, K.3
-
Bell, J. F.5
-
Bosak, T.6
- Broz, A. P.7
- Clavé, E.8
-
Cousin, A.9
-
Davidoff, S.3
-
Dehouck, E.10
-
Farley, K. A.11
- Gupta, S.12
-
Hamran, S.-E.13
- Hickman-Lewis, K.14
-
Johnson, J. R.15
-
Jones, A. J.12
-
Jones, M. W. M.16
-
Jørgensen, P. S.17
-
Kah, L. C.18
-
Kalucha, H.11
-
Kizovski, T. V.19
-
Klevang, D. A.17
-
Liu, Y.3
-
McCubbin, F. M.20
-
Moreland, E. L.21
-
Paar, G.22
-
Paige, D. A.23
-
Pascuzzo, A. C.24
- Rice, M. S.25
- Schmidt, M. E.19
-
Siebach, K. L.21
- Siljeström, S.26
-
Simon, J. I.20
-
Stack, K. M.3
-
Steele, A.27
-
Tosca, N. J.28
-
Treiman, A. H.29
- VanBommel, S. J.30
-
Wade, L. A.3
-
Weiss, B. P.6
-
Wiens, R. C.7
-
Williford, K. H.31
- Barnes, R.12
- Barr, P. A.24
- Bechtold, A.32
-
Beck, P.33
-
Benzerara, K.34
-
Bernard, S.35
-
Beyssac, O.36
-
Bhartia, R.37
-
Brown, A. J.38
-
Caravaca, G.9, 39
-
Cardarelli, E. L.23
-
Cloutis, E. A.40
-
Fairén, A. G.41
- Flannery, D. T.16
-
Fornaro, T.42
-
Fouchet, T.43
-
Garczynski, B.25
-
Goméz, F.41
-
Hausrath, E. M.44
-
Heirwegh, C. M.3
-
Herd, C. D. K.45
- Huggett, J. E.24
-
Jørgensen, J. L.17
- Lee, S. W.3
- Li, A. Y.46
-
Maki, J. N.3
-
Mandon, L.11, 47
-
Mangold, N.48
-
Manrique, J. A.49
-
Martínez-Frías, J.50
- Núñez, J. I.15
-
O'Neil, L. P.2
-
Orenstein, B. J.16
- Phelan, N.24
- Quantin-Nataf, C.10
-
Russell, P.23
- Schulte, M. D.51
- Scheller, E.6
- Sharma, S.27
- Shuster, D. L.52
- Srivastava, A.27
-
Wogsland, B. V.18
-
Wolf, Z. U.53
-
1.
Stony Brook University
-
2.
Texas A&M University
-
3.
Jet Propulsion Lab
-
4.
Planetary Science Institute
-
5.
Arizona State University
-
6.
Massachusetts Institute of Technology
-
7.
Purdue University West Lafayette
-
8.
German Aerospace Center
-
9.
Research Institute in Astrophysics and Planetology
-
10.
Laboratoire de Géologie de Lyon : Terre, Planètes et Environnement
-
11.
California Institute of Technology
-
12.
Imperial College London
-
13.
University of Oslo
-
14.
Birkbeck, University of London
-
15.
Johns Hopkins University Applied Physics Laboratory
-
16.
Queensland University of Technology
-
17.
Technical University of Denmark
-
18.
University of Tennessee at Knoxville
-
19.
Brock University
-
20.
Johnson Space Center
-
21.
Rice University
-
22.
Joanneum Research
-
23.
University of California, Los Angeles
-
24.
Malin Space Science Systems (United States)
-
25.
Western Washington University
-
26.
RISE Research Institutes of Sweden
- 27. Carnegie Science Earth and Planets Laboratory, Washington DC, USA
-
28.
University of Cambridge
-
29.
Lunar and Planetary Institute
-
30.
Washington University in St. Louis
-
31.
Blue Marble Space Institute of Science
-
32.
University of Vienna
- 33. Institut d'astrophysique et de planétologie de Grenoble/ISTerre, Grenoble, France
- 34. IMPMC, UMR 7590 SU, CNRS, MNHN, IRD Biomineralogy Team Jussieu Campus, Paris, France
-
35.
Institute of Mineralogy, Materials Physics and Cosmochemistry
-
36.
Sorbonne University
-
37.
Photon Systems (United States)
- 38. Plancius Research, Manlius, NY, USA
-
39.
Géosciences Environnement Toulouse
-
40.
University of Winnipeg
-
41.
Centro de Astrobiología
- 42. INAF-Astrophysical Observatory of Arcetri, Florence, Italy
-
43.
Paris Observatory
- 44. Department of Geoscience, UNLV, Las Vegas, NV, USA
-
45.
University of Alberta
-
46.
University of Washington
-
47.
Institut de Planétologie et d'Astrophysique de Grenoble
-
48.
Laboratoire de Planétologie et Géodynamique de Nantes
-
49.
University of Valladolid
-
50.
Spanish National Research Council
-
51.
National Aeronautics and Space Administration
-
52.
University of California, Berkeley
-
53.
Los Alamos National Laboratory
Abstract
The Perseverance rover has explored and sampled igneous and sedimentary rocks within Jezero Crater to characterize early Martian geological processes and habitability and search for potential biosignatures. Upon entering Neretva Vallis, on Jezero Crater's western edge8, Perseverance investigated distinctive mudstone and conglomerate outcrops of the Bright Angel formation. Here we report a detailed geological, petrographic and geochemical survey of these rocks and show that organic-carbon-bearing mudstones in the Bright Angel formation contain submillimetre-scale nodules and millimetre-scale reaction fronts enriched in ferrous iron phosphate and sulfide minerals, likely vivianite and greigite, respectively. This organic carbon appears to have participated in post-depositional redox reactions that produced the observed iron-phosphate and iron-sulfide minerals. Geological context and petrography indicate that these reactions occurred at low temperatures. Within this context, we review the various pathways by which redox reactions that involve organic matter can produce the observed suite of iron-, sulfur- and phosphorus-bearing minerals in laboratory and natural environments on Earth. Ultimately, we conclude that analysis of the core sample collected from this unit using high-sensitivity instrumentation on Earth will enable the measurements required to determine the origin of the minerals, organics and textures it contains.
Copyright and License
© The Author(s) 2025. This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
Acknowledgement
We acknowledge the efforts of the Mars 2020 Science and Engineering Teams. This work was carried out by A.C.A., M.L.C., K.P.H., K.U., S.D., K.A.F., S.W.L., Y.L., K.M.S., L.A.W., C.M.H. and J.N.M. at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004).
Data Availability
The data presented in this paper are available on the NASA Planetary Data System Geoscience Node and Imaging and Cartography Node, which host dedicated repositories for data derived from the Mars 2020 Rover mission. The DOIs for these repositories are: Mars 2020 Mission bundle, https://doi.org/10.17189/1522642; PIXL Instrument bundle, https://doi.org/10.17189/1522645; derived data collection for PIXL individual PMC oxide quantifications, https://doi.org/10.17189/vth5-0676; RIMFAX Instrument bundle, https://doi.org/10.17189/1522644; SHERLOC Instrument bundle, https://doi.org/10.17189/1522643; SuperCam Instrument bundle, https://doi.org/10.17189/1522646; Mastcam-Z Science Imaging bundle, https://doi.org/10.17189/q3ts-c749; WATSON, ACI, and MCC imager bundle, https://doi.org/10.17189/1522846.
Code Availability
Quantification of PIXL XRF data was conducted using PIQUANT65, a fundamental parameters XRF analysis software package developed for PIXL57. PIQUANT is embedded in the data visualization software package called PIXLISE57,70,71, which was used for analysis of quantified PIXL XRF data. The PIXLISE and PIQUANT software packages can be accessed at PIXLISE.org. PIXLISE source code versions are archived for reproducibility at OFS.io72.
Supplemental Material
Supplementary Information:This file contains Supplementary Text, Tables 1–3, Figs. 1–26 and References.
Supplementary Data:File containing tabulated PIXL XRF data for rock bulk and region of interest compositions, as well as data used in the construction of Supplementary Figs. 21f–h and 26.
Files
Name | Size | Download all |
---|---|---|
md5:c26722ebc568715a043a0b267a278ef2
|
4.5 MB | Preview Download |
md5:87f059e1a6665c0e1f265621fc57213e
|
6.1 MB | Download |
md5:e2a136444afdcee3e0be7286260ce50b
|
52.1 MB | Download |
Additional details
- PMCID
- PMC12422973
- PMID
- 40931152
- National Aeronautics and Space Administration
- 80NM0018D0004
- Accepted
-
2025-07-15
- Available
-
2025-09-10Published online
- Caltech groups
- Division of Geological and Planetary Sciences (GPS)
- Publication Status
- Published