Published December 15, 2004 | Version public
Journal Article

Fitting SDE models to nonlinear Kac–Zwanzig heat bath models

Abstract

We study a class of "particle in a heat bath" models, which are a generalization of the well-known Kac–Zwanzig class of models, but where the coupling between the distinguished particle and the n heat bath particles is through nonlinear springs. The heat bath particles have random initial data drawn from an equilibrium Gibbs density. The primary objective is to approximate the forces exerted by the heat bath—which we do not want to resolve—by a stochastic process. By means of the central limit theorem for Gaussian processes, and heuristics based on linear response theory, we demonstrate conditions under which it is natural to expect that the trajectories of the distinguished particle can be weakly approximated, as n→∞, by the solution of a Markovian SDE. The quality of this approximation is verified by numerical calculations with parameters chosen according to the linear response theory. Alternatively, the parameters of the effective equation can be chosen using time series analysis. This is done and agreement with linear response theory is shown to be good.

Additional Information

© 2004 Elsevier B.V. Received 18 December 2002, Revised 28 October 2003, Accepted 6 April 2004, Available online 18 November 2004. We are grateful to D. Brillinger, A. Chorin, S. Evans, Y. Farjoun, R. Mannella, J. Neu, Y. Peres, P. Tupper and P. Wiberg for helpful discussions. RK was supported by the Israel Science Foundation founded by the Israel Academy of Sciences and Humanities, by the Alon Fellowship, and by the Applied Mathematical Sciences subprogram of the Office of Energy Research of the US Department of Energy under contract DE-AC03-76-SF00098. A.M.S. was supported by the EPSRC, UK.

Additional details

Identifiers

Eprint ID
78067
Resolver ID
CaltechAUTHORS:20170609-143006730

Funding

Israel Science Foundation
Alon Fellowship
Department of Energy (DOE)
DE-AC03-76-SF00098
Engineering and Physical Sciences Research Council (EPSRC)

Dates

Created
2017-06-09
Created from EPrint's datestamp field
Updated
2021-11-15
Created from EPrint's last_modified field

Caltech Custom Metadata

Other Numbering System Name
Andrew Stuart
Other Numbering System Identifier
J62