Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published April 2017 | Published + Submitted
Journal Article Open

Observing Exoplanets with High Dispersion Coronagraphy. I. The scientific potential of current and next-generation large ground and space telescopes

Abstract

Direct imaging of exoplanets presents a formidable technical challenge owing to the small angular separation and high contrast between exoplanets and their host stars. High Dispersion Coronagraphy (HDC) is a pathway to achieve unprecedented sensitivity to Earth-like planets in the habitable zone. Here, we present a framework to simulate HDC observations and data analyses. The goal of these simulations is to perform a detailed analysis of the trade-off between raw star light suppression and spectral resolution for various instrument configurations, target types, and science cases. We predict the performance of an HDC instrument at Keck observatory for characterizing directly imaged gas-giant planets in near infrared bands. We also simulate HDC observations of an Earth-like planet using next-generation ground-based (TMT) and spaced-base telescopes (HabEx and LUVOIR). We conclude that ground-based ELTs are more suitable for HDC observations of an Earth-like planet than future space-based missions owing to the considerable difference in collecting area. For ground-based telescopes, HDC observations can detect an Earth-like planet in the habitable zone around an M dwarf star at 10^(−4) starlight suppression level. Compared to the 10^(−7) planet/star contrast, HDC relaxes the starlight suppression requirement by a factor of 10^3. For space-based telescopes, detector noise will be a major limitation at spectral resolutions higher than 10^4. Considering detector noise and speckle chromatic noise, R=400 (1600) is the optimal spectral resolutions for HabEx(LUVOIR). The corresponding starlight suppression requirement to detect a planet with planet/star contrast = 6.1×10^(−11) is relaxed by a factor of 10 (100) for HabEx (LUVOIR).

Additional Information

© 2017. The American Astronomical Society. Received 2016 October 24; revised 2017 February 15; accepted 2017 February 16; published 2017 March 30. The authors would like to acknowledge the financial support of the Heising-Simons foundation. The authors acknowledge ideas and advice from the participants in the Exoplanet Imaging and Characterization: Coherent Differential Imaging and Signal Detection Statistics workshop organized by the W.M. Keck Institute for Space Studies.

Attached Files

Published - Wang_2017_AJ_153_183.pdf

Submitted - 1703.00582.pdf

Files

1703.00582.pdf
Files (8.5 MB)
Name Size Download all
md5:4d12946f12a5727710dc341661e8e113
5.1 MB Preview Download
md5:4b40e4e32da715830038696fb3bce356
3.3 MB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 25, 2023