Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published 2001 | public
Journal Article Open

Tamagawa Numbers for Motives with (Non-Commutative) Coefficients

Abstract

Let $M$ be a motive which is defined over a number field and admits an action of a finite dimensional semisimple $\bq$-algebra $A$. We formulate and study a conjecture for the leading coefficient of the Taylor expansion at $0$ of the $A$-equivariant $L$-function of $M$. This conjecture simultaneously generalizes and refines the Tamagawa number conjecture of Bloch, Kato, Fontaine, Perrin-Riou et al. and also the central conjectures of classical Galois module theory as developed by Fröhlich, Chinburg, M. Taylor et al. The precise formulation of our conjecture depends upon the choice of an order $\A$ in $A$ for which there exists a `projective $\A$-structure' on $M$. The existence of such a structure is guaranteed if $\A$ is a maximal order, and also occurs in many natural examples where $\A$ is non-maximal. In each such case the conjecture with respect to a non-maximal order refines the conjecture with respect to a maximal order. We develop a theory of determinant functors for all orders in $A$ by making use of the category of virtual objects introduced by Deligne.

Additional Information

Received: September 6, 2001. Revised: January 28, 2002. Communicated by Don Blasius

Files

BURdm01.pdf
Files (625.1 kB)
Name Size Download all
md5:50e4d2e064947e4fa0cb440da674bc18
625.1 kB Preview Download

Additional details

Created:
August 21, 2023
Modified:
October 13, 2023