Published January 1993 | Version Published
Book Section - Chapter Open

On the Finite Sample Performance of the Nearest Neighbor Classifier

Abstract

The finite sample performance of a nearest neighbor classifier is analyzed for a two-class pattern recognition problem. An exact integral expression is derived for the m-sample risk R_m given that a reference m-sample of labeled points, drawn independently from Euclidean n-space according to a fixed probability distribution, is available to the classifier. For a family of smooth distributions characterized by asymptotic expansions in general form, it is shown that the m-sample risk R_m has a complete asymptotic series expansion R_m ~ R_∞ + Σ^∞_(k=1) c_km^(-k/n) (m → ∞) where R_∞ denotes the nearest neighbor risk in the infinite-sample limit. Improvements in convergence rate are shown under stronger smoothness assumptions, and in particular, R_m = R_∞ + O(m^(-2/n)) if the class-conditional probability densities have uniformly bounded third derivatives on their probability one support. This analysis thus provides further analytic validation of Bellman's curse of dimensionality. Numerical simulations corroborating the formal results are included, and extensions of the theory discussed. The analysis also contains a novel application of Laplace's asymptotic method of integration to a multidimensional integral where the integrand attains its maximum on a continuum of points.

Additional Information

© 1993 IEEE. The work reported here was supported in part by the Air Force Office of Scientific Research under grant AFOSR 89-0523 to Santosh S Venkatesh.

Attached Files

Published - 00748670.pdf

Files

00748670.pdf

Files (76.3 kB)

Name Size Download all
md5:fc641d9135a012939ab39af79c1b210c
76.3 kB Preview Download

Additional details

Identifiers

Eprint ID
77838
Resolver ID
CaltechAUTHORS:20170530-155148945

Funding

Air Force Office of Scientific Research (AFOSR)
AFOSR 89-0523

Dates

Created
2017-05-31
Created from EPrint's datestamp field
Updated
2021-11-15
Created from EPrint's last_modified field