Real-Time Operator Evolution in Two and Three Dimensions via Sparse Pauli Dynamics
Abstract
We study real-time operator evolution using sparse Pauli dynamics, a recently developed method for simulating expectation values of quantum circuits. On the examples of energy and charge diffusion in one-dimensional (1D) spin chains and sudden quench dynamics in the 2D transverse-field Ising model, it is shown that this approach can compete with state-of-the-art tensor network methods. We further demonstrate the flexibility of the approach by studying quench dynamics in the 3D transverse-field Ising model that is highly challenging for tensor network methods. For the simulation of expectation value dynamics starting in a computational basis state, we introduce an extension of sparse Pauli dynamics that truncates the growing sum of Pauli operators by discarding terms with a large number of X and Y matrices. This is validated by our 2D and 3D simulations. Finally, we argue that sparse Pauli dynamics is not only capable of converging challenging observables to high accuracy, but can also serve as a reliable approximate approach even when given only limited computational resources. Published by the American Physical Society 2025
Copyright and License
Copyright 2025. Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.
Acknowledgement
We thank Jacek Dziarmaga for sharing the iPEPS simulation data presented in Fig. 5 and Huanchen Zhai for help with setting up the MPO simulations presented in Fig. 3. The authors were supported by the US Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, and Office of Basic Energy Sciences, Scientific Discovery through the Advanced Computing (SciDAC) program under Award No. DE-SC0022088. T.B. acknowledges financial support from the Swiss National Science Foundation through the Postdoc Mobility Fellowship (Grant No. P500PN-214214). G.K.-L.C. is a Simons Investigator in Physics. Computations presented here were conducted at the Resnick High Performance Computing Center, a facility supported by the Resnick Sustainability Institute at the California Institute of Technology.
Data Availability
The data that support the findings of this article are openly available in a Zenodo repository [51].
Code Availability
The code used to produce the results is available from GitHub [52].
Files
Name | Size | Download all |
---|---|---|
md5:93bb745c922ba748563ff0d69fa1db9f
|
2.0 MB | Preview Download |
Additional details
- Office of Advanced Scientific Computing Research
- Office of Basic Energy Sciences
- Advanced Computing (SciDAC) DE-SC0022088
- Swiss National Science Foundation
- Postdoc Mobility Fellowship P500PN-214214
- Resnick Sustainability Institute
- Accepted
-
2025-03-07Accepted
- Caltech groups
- Division of Chemistry and Chemical Engineering (CCE)
- Publication Status
- Published