Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published September 2010 | Published
Journal Article Open

Planck pre-launch status: High Frequency Instrument polarization calibration

Abstract

The High Frequency Instrument of Planck will map the entire sky in the millimeter and sub-millimeter domain from 100 to 857 GHz with unprecedented sensitivity to polarization (ΔP/T_(cmb) ~ 4 × 10^(-6) for P either Q or U and T_(cmb) ≃ 2.7 K) at 100, 143, 217 and 353 GHz. It will lead to major improvements in our understanding of the cosmic microwave background anisotropies and polarized foreground signals. Planck will make high resolution measurements of the E-mode spectrum (up to l ~ 1500) and will also play a prominent role in the search for the faint imprint of primordial gravitational waves on the CMB polarization. This paper addresses the effects of calibration of both temperature (gain) and polarization (polarization efficiency and detector orientation) on polarization measurements. The specific requirements on the polarization parameters of the instrument are set and we report on their pre-flight measurement on HFI bolometers. We present a semi-analytical method that exactly accounts for the scanning strategy of the instrument as well as the combination of different detectors. We use this method to propagate errors through to the CMB angular power spectra in the particular case of Planck-HFI, and to derive constraints on polarization parameters. We show that in order to limit the systematic error to 10% of the cosmic variance of the E-mode power spectrum, uncertainties in gain, polarization efficiency and detector orientation must be below 0.15%, 0.3% and 1° respectively. Pre-launch ground measurements reported in this paper already fulfill these requirements.

Additional Information

© 2010 ESO. Received 3 August 2009; Accepted 7 April 2010. Published online 15 September 2010. The Planck-HFI instrument (http://hfi.planck.fr/) was designed and built by an international consortium of laboratories, universities and institutes, with important contributions from the industry, under the leadership of the PI institute, IAS at Orsay, France. It was funded in particular by CNES, CNRS, NASA, STFC and ASI. The authors extend their gratitude to the numerous engineers and scientists, who have contributed to the design, development, construction or evaluation of the HFI instrument. The authors are pleased to thank the referee for his/her very useful remarks.

Attached Files

Published - Rosset2010p11789Astron_Astrophys.pdf

Files

Rosset2010p11789Astron_Astrophys.pdf
Files (1.8 MB)
Name Size Download all
md5:0e8ab98dd91f0c2095d84f3b2a034e93
1.8 MB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 20, 2023