Published August 2020 | Version Submitted
Book Section - Chapter Open

Preference-Based Learning for Exoskeleton Gait Optimization

  • 1. ROR icon California Institute of Technology
  • 2. ROR icon Tsinghua University

Abstract

This paper presents a personalized gait optimization framework for lower-body exoskeletons. Rather than optimizing numerical objectives such as the mechanical cost of transport, our approach directly learns from user preferences, e.g., for comfort. Building upon work in preference-based interactive learning, we present the CoSpar algorithm. CoSpar prompts the user to give pairwise preferences between trials and suggest improvements; as exoskeleton walking is a non-intuitive behavior, users can provide preferences more easily and reliably than numerical feedback. We show that CoSpar performs competitively in simulation and demonstrate a prototype implementation of CoSpar on a lower-body exoskeleton to optimize human walking trajectory features. In the experiments, CoSpar consistently found user-preferred parameters of the exoskeleton's walking gait, which suggests that it is a promising starting point for adapting and personalizing exoskeletons (or other assistive devices) to individual users.

Additional Information

© 2020 IEEE. This research was supported by NIH grant EB007615, NSF NRI award 1724464, NSF Graduate Research Fellowship No. DGE1745301, and the Caltech Big Ideas and ZEITLIN Funds. This work was conducted under IRB No. 16-0693. The authors would like to thank the volunteers who participated in the experiments, as well as the entire Wandercraft team that designed Atalante and continues to provide technical support for this project.

Attached Files

Submitted - 1909.12316.pdf

Files

1909.12316.pdf

Files (5.0 MB)

Name Size Download all
md5:3322e5f607959ea2b590d9c53bee13eb
5.0 MB Preview Download

Additional details

Identifiers

Eprint ID
100589
DOI
10.1109/ICRA40945.2020.9196661
Resolver ID
CaltechAUTHORS:20200109-095946819

Funding

NIH
EB007615
NSF
IIS-1724464
NSF Graduate Research Fellowship
DGE-1745301
Caltech

Dates

Created
2020-01-09
Created from EPrint's datestamp field
Updated
2021-11-16
Created from EPrint's last_modified field