Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published July 15, 2022 | Submitted
Report Open

Decentralized, Communication- and Coordination-free Learning in Structured Matching Markets


We study the problem of online learning in competitive settings in the context of two-sided matching markets. In particular, one side of the market, the agents, must learn about their preferences over the other side, the firms, through repeated interaction while competing with other agents for successful matches. We propose a class of decentralized, communication- and coordination-free algorithms that agents can use to reach to their stable match in structured matching markets. In contrast to prior works, the proposed algorithms make decisions based solely on an agent's own history of play and requires no foreknowledge of the firms' preferences. Our algorithms are constructed by splitting up the statistical problem of learning one's preferences, from noisy observations, from the problem of competing for firms. We show that under realistic structural assumptions on the underlying preferences of the agents and firms, the proposed algorithms incur a regret which grows at most logarithmically in the time horizon. Our results show that, in the case of matching markets, competition need not drastically affect the performance of decentralized, communication and coordination free online learning algorithms.

Additional Information

Research was partially supported by NSF under grant DMS 2013985 THEORINet: Transferable, Hierarchical, Expressive, Optimal, Robust and Interpretable Networks and U.S. Office of Naval Research MURI grant N00014-16-1- 2710.

Attached Files

Submitted - 2206.02344.pdf


Files (2.7 MB)
Name Size Download all
2.7 MB Preview Download

Additional details

August 20, 2023
October 24, 2023