Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published December 2020 | Published + Submitted
Journal Article Open

Freezing point depression and freeze-thaw damage by nanofluidic salt trapping


A remarkable variety of organisms and wet materials are able to endure temperatures far below the freezing point of bulk water. Cryotolerance in biology is usually attributed to "antifreeze" proteins, and yet massive supercooling (<−40∘C) is also possible in porous media containing only simple aqueous electrolytes. For concrete pavements, the common wisdom is that freeze-thaw (FT) damage results from the expansion of water upon freezing, but this cannot explain the high pressures (>10 MPa) required to damage concrete, the observed correlation between pavement damage and deicing salts, or the FT damage of cement paste loaded with benzene (which contracts upon freezing). In this work, we propose a different mechanism—nanofluidic salt trapping—which can explain the observations, using simple mathematical models of dissolved ions confined between growing ice and charged pore surfaces. When the transport time scale for ions through charged pore space is prolonged, ice formation in confined pores causes enormous disjoining pressures via the ions rejected from the ice core, until their removal by precipitation or surface adsorption at lower temperatures releases the pressure and allows complete freezing. The theory is able to predict the nonmonotonic salt-concentration dependence of FT damage in concrete and provides some hint to better understand the origins of cryotolerance from a physical chemistry perspective.

Additional Information

© 2020 American Physical Society. (Received 28 July 2020; accepted 9 November 2020; published 2 December 2020) The authors thank S. Yip, C. Qiao, J. Weiss, and M. Pinson for useful discussions. This work was carried out with the support of the Concrete Sustainability Hub at MIT.

Attached Files

Submitted - 1905.07036.pdf

Published - PhysRevFluids.5.124201.pdf


Files (2.9 MB)
Name Size Download all
1.8 MB Preview Download
1.1 MB Preview Download

Additional details

August 20, 2023
August 20, 2023