Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published January 2007 | metadata_only
Journal Article

Correlation Between Vortex Ring Formation and Mitral Annulus Dynamics During Ventricular Rapid Filling


One of the most important fluid phenomena observed in the left ventricle during diastole is the presence of vortex rings that develop with a strong jet entering through the mitral valve. The present study is focused on the rapid filling phase of diastole, during which the left ventricle expands and receives blood through the fully open mitral valve. The atrio-ventricular system during the rapid filling phase was emulated experimentally with a simplified mechanical model in which the relevant pressure decay and the dimension of mitral annulus approximate the physiologic and pathologic values. Digital particle image velocimetry measurements were correlated with the force measurements on the mitral annulus plane to analyze the relation between flow and the mitral annulus motion. The recoil force on the displaced annulus plane was computed on the basis of plane acceleration and plane velocity and correlated with the inflow jet. Measurements of the recoil force for different values of the mitral annulus diameter showed that the recoil force was generated during fluid propulsion and that it is maximal for an annulus diameter close to the normal adult value in a healthy left ventricle. We also tested annulus diameters smaller and larger than the normal one. The smaller annulus corresponds to the stenotic valves and the larger annulus exists in dilated cardiomyopathy cases. In both conditions, the recoil force was found to be smaller than in the normal case. These observations are consistent with the previously reported results for dilated cardiomyopathy and mitral stenosis clinical conditions.

Additional Information

© 2007 American Society for Artificial Internal Organs. Submitted for consideration May 2006; accepted for publication in revised form July 2006. The authors are grateful to Prof. Anthony Leonard for the useful discussions on control volume analysis and to Prof. Michael Dickinson and his group for using their high-speed cameras.

Additional details

August 19, 2023
August 19, 2023