Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published June 2010 | Published
Journal Article Open

Plasma tubes becoming collimated as a result of magnetohydrodynamic pumping


Collimated magnetized plasma structures are commonly observed on galactic, stellar, and laboratory scales. The Caltech plasma gun produces magnetically driven plasma jets bearing a striking resemblance to astrophysical jets and solar coronal loops by imposing boundary conditions analogous to those plasmas. This paper presents experimental observations of gun-produced plasma jets that support a previously proposed magnetohydrodynamic (MHD) pumping model [ P. M. Bellan, Phys. Plasmas 10, 1999 (2003) ] as a universal collimation mechanism. For any initially flared, magnetized plasma tube with a finite axial current, the model predicts (i) magnetic pumping of plasma particles from a constricted region into a bulged region and (ii) tube collimation if the flow slows down at the bulged region leading to accumulation of mass and thus concentrating the azimuthal magnetic flux frozen in the mass flow (i.e., increasing the pinch force). Time- and space-resolved spectroscopic measurements of gun-produced plasmas have confirmed the highly dynamic nature of the process leading to a collimated state, namely, (i) suprathermal Alfvénic flow (30–50 km/s), (ii) large density amplification from ~ 10^(17) to ~ 10^(22) m^(−3) in an Alfvénic time scale (5–10 μs), and (iii) flow slowing down and mass accumulation at the flow front, the place where the tube collimation occurs according to high-speed camera imaging. These observations are consistent with the predictions of the MHD pumping model, and offer valuable insight into the formation mechanism of laboratory, solar, and astrophysical plasma structures.

Additional Information

© 2010 American Institute of Physics. Received 5 February 2010; accepted 6 May 2010; published online 17 June 2010. This work was supported by U.S. DOE (Grant No. DEFG02-04ER54755).

Attached Files

Published - Yun2010p11035Phys_Plasmas.pdf


Files (1.0 MB)
Name Size Download all
1.0 MB Preview Download

Additional details

August 19, 2023
August 19, 2023