Future Missions to Titan: Scientific and Engineering Challenges
Abstract
Saturn's largest moon, Titan, has been an enigma at every stage of its exploration. For three decades after the hazy atmosphere was discovered from the ground in the 1940s, debate ensued over whether it was a thin layer of methane or a dense shield of methane and nitrogen. Voyager 1 settled the matter in favor of the latter in 1980, but the details of the thick atmosphere discovered raised even more intriguing questions about the nature of the hidden surface, and the sources of resupply of methane to the atmosphere. The simplest possibility, that an ocean of methane and its major photochemical product ethane might cover the globe, was cast in doubt by Earth-based radar studies and then eliminated by Hubble Space Telescope and adaptive optics imaging in the near-infrared from large ground-based telescopes in the 1990s. These data, however, did not reveal the complexity of the surface that Cassini-Huygens would uncover beginning in 2004. A hydrological cycle appears to exist in which methane (in concert with ethane in some processes) plays the role on Titan that water plays on Earth. Channels likely carved by liquid methane and/or ethane, lakes and seas of these materials—some rivaling or exceeding North America's Great Lakes in size—vast equatorial dune fields of complex organics made high in the atmosphere and shaped by wind, and intriguing hints of geologic activity suggest a world with a balance of geologic and atmospheric processes that is the solar system's best analogue to Earth. Deep underneath Titan's dense atmosphere and active, diverse surface is an interior ocean discovered by Cassini and thought to be largely composed of liquid water. Cassini-Huygens has provided spectacular data and has enabled us to glimpse the mysterious surface of Titan. However the mission will leave us with many questions that require future missions to answer. These include determining the composition of the surface and the geographic distribution of various organic constituents. Key questions remain about the ages of surface features, specifically whether cryovolcanism and tectonism are actively ongoing or are relics of a more active past. Ammonia, circumstantially suggested to be present by a variety of different kinds of Cassini-Huygens data, has yet to be seen. Is methane out-gassing from the interior or ice crust today? Are the lakes fed primarily by rain or underground methane-ethane aquifers (more properly, "alkanofers") and how often have heavy methane rains come to the equatorial region? We should investigate whether Titan's surface supported vaster seas of methane in the past, and whether complex self-organizing chemical systems have come and gone in the water volcanism, or even exist in exotic form today in the high latitude lakes. The presence of a magnetic field has yet to be established. A large altitude range in the atmosphere, from 400–900 km in altitude, will remain poorly explored after Cassini. Much remains to be understood about seasonal changes of the atmosphere at all levels, and the long-term escape of constituents to space. Other than Earth, Titan is the only world in our solar system known to have standing liquids and an active "hydrologic cycle" with clouds, rains, lakes and streams. The dense atmosphere and liquid lakes on Titan's surface can be explored with airborne platforms and landed probes, but the key aspect ensuring the success of future investigations is the conceptualization and design of instruments that are small enough to fit on the landed probes and airborne platforms, yet sophisticated enough to conduct the kinds of detailed chemical (including isotopic), physical, and structural analyses needed to investigate the history and cycling of the organic materials. In addition, they must be capable of operating at cryogenic temperatures while maintaining the integrity of the sample throughout the analytic process. Illuminating accurate chemistries also requires that the instruments and tools are not simultaneously biasing the measurements due to localized temperature increases. While the requirements for these techniques are well understood, their implementation in an extremely low temperature environment with limited mass, power and volume is acutely challenging. No such instrument systems exist today. Missions to Titan are severely limited in both mass and power because spacecraft have to travel over a billion miles to get there and require a large amount of fuel, not only to reach Titan, but to maintain the ability to maneuver when they arrive. Landed missions have additional limitations, in that they must be packaged in a sealed aeroshell for entry into Titan's atmosphere. Increases in landed mass and volume translate to increased aeroshell mass and size, requiring even more fuel for delivery to Titan. Nevertheless, missions during which such systems and instruments could be employed range from Discovery and New Frontiers class in situ probes that might be launched in the next decade, to a full-up Flagship class mission anticipated to follow the Europa Jupiter System Mission. Capitalizing on recent breakthroughs in cryo-technologies and smart materials fabrication, we developed conceptual designs of sample acquisition systems and instruments capable of in situ operation under low temperature environments. The study included two workshops aimed at brainstorming and actively discussing a broad range of ideas and associated challenges with landing instruments on Titan, as well as more focused discussions during the intervening part of the study period. The workshops each lasted ~4 days (Monday-Thursday/Friday), included postdoctoral fellows and students in addition to the core team members, and generated active engagement from the Caltech and JPL team participants, as well as from the outside institutions. During the workshops, new instruments and sampling methodologies were identified to handle the challenges of characterizing everything from small molecules in Titan's upper atmosphere to gross mixtures of high molecular weight complex organics in condensed phases, including atmospheric aerosols and "organic sand" in dunes, to highly dilute components in ices and lakes. To enable these advances in cryogenic instrumentation breakthroughs in a wide range of disciplines, including electronics, chemical and mechanical engineering, and materials science were identified.
Additional Information
This study was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.Attached Files
Accepted Version - Titan_final_report.pdf
Files
Name | Size | Download all |
---|---|---|
md5:bf76032d2f78a9e983f120311d1ade8f
|
4.8 MB | Preview Download |
Additional details
- Eprint ID
- 92930
- Resolver ID
- CaltechAUTHORS:20190214-102139841
- NASA/JPL/Caltech
- Created
-
2019-02-15Created from EPrint's datestamp field
- Updated
-
2020-01-24Created from EPrint's last_modified field
- Caltech groups
- Keck Institute for Space Studies, Division of Geological and Planetary Sciences
- Series Name
- Keck Institute for Space Studies