Structural design under seismic risk using multiple performance objectives
- Creators
- Irfanoglu, Ayhan
Abstract
Structural design is a decision-making process in which a wide spectrum of requirements, expectations, and concerns needs to be properly addressed. Engineering design criteria are considered together with societal and client preferences, and most of these design objectives are affected by the uncertainties surrounding a design. Therefore, realistic design frameworks must be able to handle multiple performance objectives and incorporate uncertainties from numerous sources into the process. In this study, a multi-criteria based design framework for structural design under seismic risk is explored. The emphasis is on reliability-based performance objectives and their interaction with economic objectives. The framework has analysis, evaluation, and revision stages. In the probabilistic response analysis, seismic loading uncertainties as well as modeling uncertainties are incorporated. For evaluation, two approaches are suggested: one based on preference aggregation and the other based on socio-economics. Both implementations of the general framework are illustrated with simple but informative design examples to explore the basic features of the framework. The first approach uses concepts similar to those found in multi-criteria decision theory, and directly combines reliability-based objectives with others. This approach is implemented in a single-stage design procedure. In the socio-economics based approach, a two-stage design procedure is recommended in which societal preferences are treated through reliability-based engineering performance measures, but emphasis is also given to economic objectives because these are especially important to the structural designer's client. A rational net asset value formulation including losses from uncertain future earthquakes is used to assess the economic performance of a design. A recently developed assembly-based vulnerability analysis is incorporated into the loss estimation. The presented performance-based design framework allows investigation of various design issues and their impact on a structural design. It is a flexible one that readily allows incorporation of new methods and concepts in seismic hazard specification, structural analysis, and loss estimation.
Additional Information
Ph.D, 2000Attached Files
Accepted Version - eerl2000-02.pdf
Files
Name | Size | Download all |
---|---|---|
md5:02e638ec6f52971406173760cf628f24
|
10.3 MB | Preview Download |
Additional details
- Eprint ID
- 26248
- Resolver ID
- CaltechEERL:2000.EERL-2000-02
- Created
-
2001-08-17Created from EPrint's datestamp field
- Updated
-
2021-08-18Created from EPrint's last_modified field
- Caltech groups
- Earthquake Engineering Research Laboratory
- Series Name
- EERL Report
- Series Volume or Issue Number
- 2000-02