Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published October 28, 2022 | public
Journal Article

Effects of dilution in ionic liquid supercapacitors


Room-temperature ionic liquids (RTILs) are synthetic electrolytes that have a large electrochemical stability window, making them attractive candidates for electric double-layer capacitor (EDLC) applications. Due to their high viscosities and low ionic conductivities, RTILs are often diluted with organic solvent for practical use. We study the effects of dilution on the performance of RTIL EDLCs using a simple mean-field model. We find that dilution diminishes the unfavorable hysteresis that results from a spontaneous surface charge separation (SSCS). As a result, the RTIL concentration can be used to modulate the proximity to the SSCS transition, and maximize capacitance. The interplay between the concentration and the correlation strength gives rise to complex zero-potential phase behavior, including a tricritical point and a λ-line, very similar to the Blume–Capel dilute Ising model. Additionally, electrodes that are solvophilic aid in the prevention of SSCS by drawing solvent molecules to the electrode and displacing ions. Solvophilic electrodes give rise to a phase transition at finite potential where the surface charge rapidly increases with a small increase in potential, leading to a substantial increase in capacitance and energy storage.

Additional Information

S. V. is supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Department of Energy Computational Science Graduate Fellowship under Award Number DE-SC0022158. Z.-G. W. acknowledges financial support from the Hong Kong Quantum AI Lab Ltd.

Additional details

August 22, 2023
October 23, 2023