Erasure Qubits: Overcoming the T₁ Limit in Superconducting Circuits
Abstract
The amplitude-damping time T₁ has long stood as the major factor limiting quantum fidelity in superconducting circuits, prompting concerted efforts in the material science and design of qubits aimed at increasing T₁. In contrast, the dephasing time T_ϕ can usually be extended above T₁ (via, e.g., dynamical decoupling) to the point where it does not limit fidelity. In this article, we propose a scheme for overcoming the conventional T₁ limit on fidelity by designing qubits in a way that amplitude-damping errors can be detected and converted into erasure errors. Compared to standard qubit implementations, our scheme improves the performance of fault-tolerant protocols, as numerically demonstrated by the circuit-noise simulations of the surface code. We describe two simple qubit implementations with superconducting circuits and discuss procedures for detecting amplitude-damping errors, performing entangling gates, and extending T_ϕ. Our results suggest that engineering efforts should focus on improving T_ϕ and the quality of quantum coherent control, as they effectively become the limiting factor on the performance of fault-tolerant protocols.
Copyright and License
Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.
Acknowledgement
We acknowledge fruitful discussions with N. Alidoust, C. Chamberland, S. T. Flammia, A. L. Grimsmo, and G. Refael.
Files
Name | Size | Download all |
---|---|---|
md5:27a69b7f20f07e633f25886e7726a604
|
1.5 MB | Preview Download |
Additional details
- Caltech groups
- AWS Center for Quantum Computing, Walter Burke Institute for Theoretical Physics, Institute for Quantum Information and Matter