Semantic Representation of Neural Circuit Knowledge in Caenorhabditis elegans
Abstract
In modern biology, new knowledge is generated quickly, making it challenging for researchers to efficiently acquire and synthesise new information from the large volume of primary publications. To address this problem, computational approaches that generate machine-readable representations of scientific findings in the form of knowledge graphs have been developed. These representations can integrate different types of experimental data from multiple papers and biological knowledge bases in a unifying data model, providing a complementary method to manual review for interacting with published knowledge. The Gene Ontology Consortium (GOC) has created a semantic modelling framework that extends individual functional gene annotations to structured descriptions of causal networks representing biological processes (Gene Ontology Causal Activity Modelling, or GO-CAM). In this study, we explored whether the GO-CAM framework could represent knowledge of the causal relationships between environmental inputs, neural circuits and behavior in the model nematode C. elegans (C. elegans Neural Circuit Causal Activity Modelling (CeN- CAM)). We found that, given extensions to several relevant ontologies, a wide variety of author statements from the literature about the neural circuit basis of egg-laying and carbon dioxide (CO2) avoidance behaviors could be faithfully represented with CeN-CAM. Through this process, we were able to generate generic data models for several categories of experimental results. We also discuss how semantic modelling may be used to functionally annotate the C. elegans connectome. Thus, Gene Ontology-based semantic modelling has the potential to support various machine-readable representations of neurobiological knowledge.
Additional Information
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license. We thank all members of the Sternberg lab at Caltech for their feedback during the course of the project. We also thank Raymond Lee (WormBase) and members of the Gene Ontology Consortium, as well as Susan Bello (Mouse Genome Informatics) and members of the Unified Phenotype Ontology working group for helpful discussions. K.V.A. & D.P.H. are funded by the National Human Genome Research Institute (U24HG012212). S.J.P. is funded by NIH U24HG010859-03S2. Data & Materials Availability. All data generated or analysed during this study are included in this published article (and its supplementary information files). The authors declare that they have no competing interests.Copyright and License
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Acknowledgement
We thank all members of the Sternberg lab at Caltech for their feedback during the course of the project. We also thank Raymond Lee (WormBase) and members of the Gene Ontology Consortium, as well as Susan Bello (Mouse Genome Informatics) and members of the Unified Phenotype Ontology working group for helpful discussions.
Funding
K.V.A. & D.P.H. are funded by the National Human Genome Research Institute (U24HG012212). S.J.P. is funded by NIH U24HG010859-03S2.
Contributions
P.W.S & S.J.P. conceived and designed the study, S.J.P, K.V.A & D.P.H. conducted the study. S.J.P, K.V.A, D.P.H & P.W.S wrote and revised the manuscript. S.J.P. prepared all the figures. All authors approved the manuscript.
Data Availability
All data generated or analysed during this study are included in this published article (and its supplementary information files).
Supplemental Material
Additional Information
Article Versions:
- Version 1 (April 30, 2023 - 14:58).
- Version 2 (July 25, 2023 - 18:50).
- Version 3 (September 19, 2023 - 03:39).
- You are viewing Version 4, the most recent version of this article
Revision Summary:
Revised Figure 4C to provide a more accurate model. Removed entries not referenced in the text from Table 4, Table 5. Image quality and presentation issues addressed.
Files
Name | Size | Download all |
---|---|---|
md5:82f42f3d8ebf3d2b664bea27346fd1ca
|
239.1 kB | Download |
md5:9336e59092bc9256ff927cc75613abfb
|
231.2 kB | Download |
md5:e7b0b1e72657fc33c3a8df30c2c503cd
|
310.3 kB | Download |
md5:1658f7dea834fdcaf699c5775cbc74c8
|
13.7 kB | Download |
md5:a78657243493ed258f08d60ace2c8f3a
|
1.2 MB | Preview Download |
Additional details
- PMCID
- PMC10168330
- Eprint ID
- 122026
- Resolver ID
- CaltechAUTHORS:20230628-257134000.27
- National Human Genome Research Institute
- U24HG012212
- NIH
- U24HG010859-03S2
- Caltech groups
- Tianqiao and Chrissy Chen Institute for Neuroscience, Division of Biology and Biological Engineering
- Publication Status
- Submitted