Published August 4, 2016
| public
Journal Article
Upper and lower bounds on a system's bandwidth based on its zero-value time constants
- Creators
- Hong, B.
- Hajimiri, A.
Abstract
It is shown that for systems with no zeros and no complex poles, the classical estimate of the 3 dB cutoff frequency based on the sum of the zero-value time constants (ZVTs) is always conservative. A non-trivial upper bound on the cutoff frequency which depends only on the sum of the ZVTs and the system's order is also derived. It is demonstrated that both bounds are tight – specifically, the lower bound is approached by making one of the system's poles increasingly dominant, whereas the best possible bandwidth is achieved when all of the system's poles overlap. The impact of complex poles on the results is also discussed.
Additional Information
© 2016 The Institution of Engineering and Technology. Submitted: 12 May 2016; E-first: 27 June 2016. The authors thank P. Khial, A. Taeb, K.-C. Chen, and A. Agarwal, all with Caltech, for their enlightening technical discussions.Additional details
- Eprint ID
- 69374
- Resolver ID
- CaltechAUTHORS:20160802-080138135
- Created
-
2016-08-02Created from EPrint's datestamp field
- Updated
-
2023-06-01Created from EPrint's last_modified field