Published August 1, 2017
| Submitted
Report
Open
A Social Choice Lemma on Voting over Lotteries with Applications to a Class of Dynamic Games
- Creators
- Banks, Jeffrey S.
- Duggan, John
Abstract
We prove a lemma characterizing majority preferences over lotteries on a subset of Euclidean space. Assuming voters have quadratic von Neumann-Morgenstern utility representations, and assuming existence of a majority undominated (or "core") point, the core voter is decisive: one lottery is majority-preferred to another if and only if this is the preference of the core voter. Several applications of this result to dynamic voting games are discussed.
Additional Information
Support from the National Science Foundation, grant numbers SES-9975173 and SES-0213738, is gratefully acknowledged. This paper was completed after Jeff Banks's death. I am deeply indebted to him for his friendship and his collaboration on this and many other projects. Published as Banks, J.S., & Duggan, J. (2006). A social choice lemma on voting over lotteries with applications to a class of dynamic games. Social Choice and Welfare, 26(2), 285-304.Attached Files
Submitted - sswp1163.pdf
Files
sswp1163.pdf
Files
(284.4 kB)
Name | Size | Download all |
---|---|---|
md5:e004230d731e736c8a807b0aa6380505
|
284.4 kB | Preview Download |
Additional details
- Eprint ID
- 79716
- Resolver ID
- CaltechAUTHORS:20170801-153654831
- NSF
- SES-9975173
- NSF
- SES-0213738
- Created
-
2017-08-01Created from EPrint's datestamp field
- Updated
-
2019-10-03Created from EPrint's last_modified field
- Caltech groups
- Social Science Working Papers
- Series Name
- Social Science Working Paper
- Series Volume or Issue Number
- 1163