Published January 14, 2019 | Version Submitted
Discussion Paper Open

Stability and flow fields structure for interfacial dynamics with interfacial mass flux

Abstract

We analyze from a far field the evolution of an interface that separates ideal incompressible fluids of different densities and has an interfacial mass flux. We develop and apply the general matrix method to rigorously solve the boundary value problem involving the governing equations in the fluid bulk and the boundary conditions at the interface and at the outside boundaries of the domain. We find the fundamental solutions for the linearized system of equations, and analyze the interplay of interface stability with flow fields structure, by directly linking rigorous mathematical attributes to physical observables. New mechanisms are identified of the interface stabilization and destabilization. We find that interfacial dynamics is stable when it conserves the fluxes of mass, momentum and energy. The stabilization is due to inertial effects causing small oscillations of the interface velocity. In the classic Landau dynamics, the postulate of perfect constancy of the interface velocity leads to the development of the Landau-Darrieus instability. This destabilization is also associated with the imbalance of the perturbed energy at the interface, in full consistency with the classic results. We identify extreme sensitivity of the interface dynamics to the interfacial boundary conditions, including formal properties of fundamental solutions and qualitative and quantitative properties of the flow fields. This provides new opportunities for studies, diagnostics, and control of multiphase flows in a broad range of processes in nature and technology.

Additional Information

© The Authors, 2019. Submitted Monday January 14, 2019. The authors thank for support the University of Western Australia in the AUS, the National Science Foundation in the USA, the Summer Undergraduate Research Fellowship Program at California Institute of Technology in the USA, and the Japan Society for the Promotion of Science in Japan. SIA expresses her deep gratitude to Prof Leo P Kadanoff for comments and remarks and for discussions on singularities and similarities.

Attached Files

Submitted - 1901.04575.pdf

Files

1901.04575.pdf

Files (4.1 MB)

Name Size Download all
md5:f580ff75adc95150abc0a690f2ba34f8
4.1 MB Preview Download

Additional details

Identifiers

Eprint ID
95722
Resolver ID
CaltechAUTHORS:20190522-205136353

Related works

Funding

University of Western Australia
NSF
Caltech Summer Undergraduate Research Fellowship (SURF)
Japan Society for the Promotion of Science (JSPS)

Dates

Created
2019-05-23
Created from EPrint's datestamp field
Updated
2023-06-02
Created from EPrint's last_modified field

Caltech Custom Metadata

Other Numbering System Name
WAG
Other Numbering System Identifier
1338