Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published April 27, 2016 | public
Book Section - Chapter

Photoacoustic imaging of voltage signals


Optical imaging of brain voltage signals is significantly limited in depth due to optical scattering and the absorptive property of brain tissue. Photoacoustic (PA) imaging promises to break this hard limit by utilizing both ballistic and diffused photons. To demonstrate the feasibility of PA, we used an in vivo mouse model. The brain cortex tissue was stained with dipicrylamine dye, electrically stimulated, and imaged with a customized dual-isosbestic-wavelength PA microscope (DIW-PAM). DIW-PAM separates voltage-induced PA signals from blood-induced PA signals and thereby allows recording the voltage response of mouse cortex tissue without interference from hemoglobin responses. The resting state PA voltage response signal exhibited a noise-like signal in the frequency domain. Upon 3 Hz electrical stimulation, the PA voltage response signal showed frequency peaks of 3.2 Hz and 6.3 Hz (Fig. 1). Although dipicrylamine dye is not fast enough for recording neuron action potentials, it served well for the purpose of this feasibility study. In conclusion, we successfully demonstrated in vivo photoacoustic imaging of mouse brain voltage signals for the first time. If a fast voltage-sensitive dye is available, using photoacoustic computed tomography (PACT) instead of PA microscopy could allow acquiring full-field PA action potential images at a speed limited only by the laser pulse repetition rate.

Additional Information

© 2016 Society of Photo-Optical Instrumentation Engineers.

Additional details

August 20, 2023
January 14, 2024