Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published June 2023 | metadata_only
Journal Article

Adjacencies on random ordering polytopes and flow polytopes


The Multiple Choice Polytope (MCP) is the prediction range of a random utility model due to Block and Marschak(1960). Fishburn(1998) offers a nice survey of the findings on random utility models at the time. A complete characterization of the MCP is a remarkable achievement of Falmagne (1978). To derive a more enlightening proof of Falmagne Theorem, Fiorini(2004) assimilates the MCP with the flow polytope of some acyclic network. However, apart from a recognition of the facets by Suck(2002), the geometric structure of the MCP was apparently not much investigated. We characterize the adjacency of vertices and the adjacency of facets. Our characterization of the edges of the MCP helps understand recent findings in economics papers such as Chang, Narita and Saito(2022) and Turansick(2022). Moreover, our results on adjacencies also hold for the flow polytope of any acyclic network. In particular, they apply not only to the MCP, but also to three polytopes which Davis-Stober, Doignon, Fiorini, Glineur and Regenwetter (2018) introduced as extended formulations of the weak order polytope, interval order polytope and semiorder polytope (the prediction ranges of other models, see for instance Fishburn and Falmagne, 1989, and Marley and Regenwetter, 2017).

Additional Information

© 2023 Elsevier. Saito acknowledges the financial support of the National Science Foundation through grants SES-1919263 and SES-1558757.

Additional details

August 22, 2023
August 22, 2023