Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published February 2002 | Published
Journal Article Open

Transcriptional and Proteomic Analysis of a Ferric Uptake Regulator (Fur) Mutant of Shewanella oneidensis: Possible Involvement of Fur in Energy Metabolism, Transcriptional Regulation, and Oxidative Stress


The iron-directed, coordinate regulation of genes depends on the fur (ferric uptake regulator) gene product, which acts as an iron-responsive, transcriptional repressor protein. To investigate the biological function of a fur homolog in the dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1, a fur knockout strain (FUR1) was generated by suicide plasmid integration into this gene and characterized using phenotype assays, DNA microarrays containing 691 arrayed genes, and two-dimensional polyacrylamide gel electrophoresis. Physiological studies indicated that FUR1 was similar to the wild-type strain when they were compared for anaerobic growth and reduction of various electron acceptors. Transcription profiling, however, revealed that genes with predicted functions in electron transport, energy metabolism, transcriptional regulation, and oxidative stress protection were either repressed (ccoNQ, etrA, cytochrome b and c maturation-encoding genes, qor, yiaY, sodB, rpoH, phoB, and chvI) or induced (yggW, pdhC, prpC, aceE, fdhD, and ppc) in the fur mutant. Disruption of fur also resulted in derepression of genes (hxuC, alcC, fhuA, hemR, irgA, and ompW) putatively involved in iron uptake. This agreed with the finding that the fur mutant produced threefold-higher levels of siderophore than the wild-type strain under conditions of sufficient iron. Analysis of a subset of the FUR1 proteome (i.e., primarily soluble cytoplasmic and periplasmic proteins) indicated that 11 major protein species reproducibly showed significant (P < 0.05) differences in abundance relative to the wild type. Protein identification using mass spectrometry indicated that the expression of two of these proteins (SodB and AlcC) correlated with the microarray data. These results suggest a possible regulatory role of S. oneidensis MR-1 Fur in energy metabolism that extends the traditional model of Fur as a negative regulator of iron acquisition systems.

Additional Information

© 2002, American Society for Microbiology. Received 29 June 2001/ Accepted 19 November 2001 We thank Guangshan Li for PCR amplification of S. oneidensis MR-1 ORFs, John Heidelberg for S. oneidensis MR-1 genome sequence information, and Allison Murray for advice on microarray data analysis. This research was supported by the U.S. Department of Energy under the Microbial Genome Program and the Natural and Accelerated Bioremediation Research Program of the Office of Biological and Environmental Research. The 2-D PAGE aspect of this work was done at Argonne National Laboratory under U.S. Department of Energy contract no. W-31-109-ENG-38. Oak Ridge National Laboratory is managed by the University of Tennessee-Battelle LLC for the Department of Energy under contract DE-AC05-00OR22725.

Attached Files

Published - THOaem02b.pdf


Files (523.9 kB)
Name Size Download all
523.9 kB Preview Download

Additional details

August 21, 2023
October 13, 2023