Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published October 7, 2006 | Published
Journal Article Open

Ultrafast vectorial and scalar dynamics of ionic clusters: Azobenzene solvated by oxygen

Abstract

The ultrafast dynamics of clusters of trans-azobenzene anion (A–) solvated by oxygen molecules was investigated using femtosecond time-resolved photoelectron spectroscopy. The time scale for stripping off all oxygen molecules from A– was determined by monitoring in real time the transient of the A– rise, following an 800 nm excitation of A– (O2)n, where n=1–4. A careful analysis of the time-dependent photoelectron spectra strongly suggests that for n>1 a quasi-O4 core is formed and that the dissociation occurs by a bond cleavage between A– and conglomerated (O2)n rather than a stepwise evaporation of O2. With time and energy resolutions, we were able to capture the photoelectron signatures of transient species which instantaneously rise (<100 fs) then decay. The transient species are assigned as charge-transfer complexes: A·O2- for A–O2 and A·O4-·(O2)n–2 for A–(O2)n, where n=2–4. Subsequent to an ultrafast electron recombination, A– rises with two distinct time scales: a subpicosecond component reflecting a direct bond rupture of the A–-(O2)n nuclear coordinate and a slower component (1.6–36 ps, increasing with n) attributed to an indirect channel exhibiting a quasistatistical behavior. The photodetachment transients exhibit a change in the transition dipole direction as a function of time delay. Rotational dephasing occurs on a time scale of 2–3 ps, with a change in the sign of the transient anisotropy between A–O2 and the larger clusters. This behavior is a key indicator of an evolving cluster structure and is successfully modeled by calculations based on the structures and inertial motion of the parent clusters.

Additional Information

© 2006 American Institute of Physics (Received 24 February 2006; accepted 20 April 2006; published online 5 October 2006) This work was supported by the National Science Foundation and the Air Force Office of Scientific Research.

Attached Files

Published - PAIjcp06.pdf

Files

PAIjcp06.pdf
Files (788.0 kB)
Name Size Download all
md5:3f7ae72e3886c93685101258d5651ad2
788.0 kB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 16, 2023