Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published July 9, 2001 | Published
Book Section - Chapter Open

Time-resolved polarization imaging: Monte Carlo simulation

Abstract

Monte Carlo method was used to simulate time resolved polarization imaging in turbid media. Mie theory was used to calculate the Meuller matrix of a single scattering event. In the simulation, the Stokes vector of each incident photon package was traced. The summation of the Stokes vectors of the traced photon packages gave the total output Stokes vector. The time integrated Mueller matrix of transmittance and reflectance light of a turbid media were calculated. The transmittance Mueller matrix and reflectance Mueller matrix have very different patterns. The time resolved 2D images of degree of polarization (DOP) for transmitted light and reflected light were calculated. The patterns showed different features for linearly polarized incident light and for circularly polarized light. The DOP patterns were also related to the scattering properties of the sample. The time resolved 2D DOP of the internal optical flux was also calculated. The DOP evolution was demonstrated vividly by the simulation results. The different patterns for linearly/circularly polarized light were compared. Linearly polarized light survived longer in turbid media with a small particle size. Circularly polarized light survived longer in turbid media with a larger particle size.

Additional Information

© 2001 Society of Photo-Optical Instrumentation Engineers (SPIE). This project was sponsored in part by National Institutes of Health grants R29 CA68562, R01 CA71980, and R21 CA83760, National Science Foundation grant BES-9734491, and Texas Higher Education Coordinating Board grant 000512-0123-1999.

Attached Files

Published - 101.pdf

Files

101.pdf
Files (450.9 kB)
Name Size Download all
md5:daf6d7de8870a4fb747136a505c95dca
450.9 kB Preview Download

Additional details

Created:
August 19, 2023
Modified:
January 14, 2024